RECOMP: A Parsimony-Based Method for Detecting Recombination

Derek A. Ruths, L. Nakhleh
{"title":"RECOMP: A Parsimony-Based Method for Detecting Recombination","authors":"Derek A. Ruths, L. Nakhleh","doi":"10.1142/9781860947292_0009","DOIUrl":null,"url":null,"abstract":"The central role phylogeny plays in biology and its pervasiveness in comparative genomics studies have led researchers to develop a plethora of methods for its accurate reconstruction. Most phylogeny reconstruction methods, though, assume a single tree underlying a given sequence alignment. While a good first approximation in many cases, a tree may not always model the evolutionary history of a set of organisms. When events such as interspecific recombi nation occur, different regions in the alignment may have different underlying trees. Accurate reconstruction of the evolutionary history of a set of sequences requires recombination detection, followed by separate analyses of the nonrecombining regions. Besides aiding accurate phylogenetic analyses, detecting recombination helps in understanding one of the main mechanisms of bacterial genome diversification. In this paper, we introduce RECOMP, an accurate and fast method for detecting recombination events in a sequence alignment. The method slides a fixed-width window across the alignment and determines the presence of recombination events based on a combination of topology and parsimony score differences in neighboring windows. On several synthetic and biological datasets, our method performs much faster than existing tools with accuracy comparable to the best available method.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"24 1","pages":"59-68"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947292_0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The central role phylogeny plays in biology and its pervasiveness in comparative genomics studies have led researchers to develop a plethora of methods for its accurate reconstruction. Most phylogeny reconstruction methods, though, assume a single tree underlying a given sequence alignment. While a good first approximation in many cases, a tree may not always model the evolutionary history of a set of organisms. When events such as interspecific recombi nation occur, different regions in the alignment may have different underlying trees. Accurate reconstruction of the evolutionary history of a set of sequences requires recombination detection, followed by separate analyses of the nonrecombining regions. Besides aiding accurate phylogenetic analyses, detecting recombination helps in understanding one of the main mechanisms of bacterial genome diversification. In this paper, we introduce RECOMP, an accurate and fast method for detecting recombination events in a sequence alignment. The method slides a fixed-width window across the alignment and determines the presence of recombination events based on a combination of topology and parsimony score differences in neighboring windows. On several synthetic and biological datasets, our method performs much faster than existing tools with accuracy comparable to the best available method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RECOMP:一种基于简约的复合检测方法
系统发育在生物学中的核心作用及其在比较基因组学研究中的普遍性使研究人员开发了大量精确重建系统发育的方法。然而,大多数系统发育重建方法都假设在给定序列比对的基础上有一个单一的树。虽然在许多情况下,树是一个很好的近似,但树并不总是能模拟一组生物的进化史。当发生种间重组等事件时,排列中的不同区域可能具有不同的底层树。准确重建一组序列的进化史需要重组检测,然后对非重组区域进行单独分析。除了有助于准确的系统发育分析外,检测重组还有助于理解细菌基因组多样化的主要机制之一。本文介绍了一种快速准确地检测序列比对中重组事件的方法RECOMP。该方法在对齐中滑动固定宽度的窗口,并根据相邻窗口的拓扑和简约性评分差异的组合确定是否存在重组事件。在一些合成和生物数据集上,我们的方法比现有的工具执行得快得多,精度与现有的最佳方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning Privacy-Utility Tradeoff in Genomic Studies Using Selective SNP Hiding. The Future of Bioinformatics CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS. Predicting Nucleolar Proteins Using Support-Vector Machines Proceedings of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, 14-17 January 2008, Kyoto, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1