Effect of Synthesis Time on Synthesis and Photoluminescence Properties of ZnO Nanorods

IF 3.1 4区 医学 Q2 BIOPHYSICS Journal of Applied Biomaterials & Functional Materials Pub Date : 2022-03-30 DOI:10.35745/afm2022v02.01.0003
Cheng-Fu Yang, Chingfu Wang, Fang-Hsing Wang, Han-Wen Liu, J. Mičová
{"title":"Effect of Synthesis Time on Synthesis and Photoluminescence Properties of ZnO Nanorods","authors":"Cheng-Fu Yang, Chingfu Wang, Fang-Hsing Wang, Han-Wen Liu, J. Mičová","doi":"10.35745/afm2022v02.01.0003","DOIUrl":null,"url":null,"abstract":"With the hydrothermal method, the p-type silicon <100> wafer was used as the substrate to synthesize ZnO nanorods in different synthesis times. To prepare the ZnO seed layer on the p-type silicon <100> wafer, a prepared ZnO gel was deposited as the seed layer using the spin coating method. A 0.2 M solution of zinc acetate dihydrate (Zn(CH3COO)2-2H2O) and hexamethylenetetramine ((CH2)6N4) were used as the source materials at a synthesis temperature of 90 °C. The synthesis time was changed from 10 to 60 min as the synthesis parameter. X-ray diffraction patterns, scanning electron microscopy, and a focused ion beam system were used to analyze and compare the crystal characteristics and the heights and widths of synthesized ZnO nanorods. We found that the crystal characteristics, the heights and widths, and the photoluminescence properties of synthesized ZnO nanorods were dependent on the synthesis time.","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"80 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Functional Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.35745/afm2022v02.01.0003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2

Abstract

With the hydrothermal method, the p-type silicon <100> wafer was used as the substrate to synthesize ZnO nanorods in different synthesis times. To prepare the ZnO seed layer on the p-type silicon <100> wafer, a prepared ZnO gel was deposited as the seed layer using the spin coating method. A 0.2 M solution of zinc acetate dihydrate (Zn(CH3COO)2-2H2O) and hexamethylenetetramine ((CH2)6N4) were used as the source materials at a synthesis temperature of 90 °C. The synthesis time was changed from 10 to 60 min as the synthesis parameter. X-ray diffraction patterns, scanning electron microscopy, and a focused ion beam system were used to analyze and compare the crystal characteristics and the heights and widths of synthesized ZnO nanorods. We found that the crystal characteristics, the heights and widths, and the photoluminescence properties of synthesized ZnO nanorods were dependent on the synthesis time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成时间对ZnO纳米棒合成及光致发光性能的影响
采用水热法,以p型硅片为衬底,在不同的合成时间合成ZnO纳米棒。为了在p型硅片上制备ZnO种子层,采用自旋镀膜法沉积制备好的ZnO凝胶作为种子层。以0.2 M二水合乙酸锌(Zn(CH3COO)2-2H2O)和六亚甲基四胺((CH2)6N4)溶液为原料,合成温度为90℃。将合成时间由10 min改为60 min作为合成参数。利用x射线衍射图、扫描电子显微镜和聚焦离子束系统分析和比较了合成ZnO纳米棒的晶体特性和高度、宽度。我们发现合成的ZnO纳米棒的晶体特性、高度和宽度以及光致发光性能都与合成时间有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Biomaterials & Functional Materials
Journal of Applied Biomaterials & Functional Materials BIOPHYSICS-ENGINEERING, BIOMEDICAL
CiteScore
4.40
自引率
4.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Biomaterials & Functional Materials (JABFM) is an open access, peer-reviewed, international journal considering the publication of original contributions, reviews and editorials dealing with clinical and laboratory investigations in the fast growing field of biomaterial sciences and functional materials. The areas covered by the journal will include: • Biomaterials / Materials for biomedical applications • Functional materials • Hybrid and composite materials • Soft materials • Hydrogels • Nanomaterials • Gene delivery • Nonodevices • Metamaterials • Active coatings • Surface functionalization • Tissue engineering • Cell delivery/cell encapsulation systems • 3D printing materials • Material characterization • Biomechanics
期刊最新文献
Vanillin loaded-physically crosslinked PVA/chitosan/itaconic membranes for topical wound healing applications Physicomechanical, morphological and tribo-deformation characteristics of lightweight WC/AZ31B Mg-matrix biocomposites for hip joint applications Effects of different antiviral mouthwashes on the surface roughness, hardness, and color stability of composite CAD/CAM materials In vitro assessment of Momordica charantia/Hypericum perforatum oils loaded PCL/Collagen fibers: Novel scaffold for tissue engineering. In vitro chemical treatment of silk increases the expression of pro-inflammatory factors and facilitates degradation in rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1