Partial co-training for virtual metrology

C. Nguyen, Xin Li, R. D. Blanton, Xiang Li
{"title":"Partial co-training for virtual metrology","authors":"C. Nguyen, Xin Li, R. D. Blanton, Xiang Li","doi":"10.1109/ETFA.2017.8247660","DOIUrl":null,"url":null,"abstract":"Virtual metrology is an important tool for industrial automation. To accurately build regression models for virtual metrology, we consider semi-supervised learning where labeled data are expensive to collect, but unlabeled data are abundant. In such a scenario, due to the scarcity of labeled data, traditional single-view learning methods face the risk of overfitting. To address the overfitting issue, we develop a Partial Co-training framework, which is an extension of the original co-training approach by means of an undirected probabilistic graphical model. Unlike other co-training techniques, this model creates a partial view by shrinking the original feature space, and makes use of this partial-view to provide guidance information for improving the complete-view model. Our approach is validated with data from two manufacturing applications. The results indicate that a consistent and robust estimation is achievable with very limited labeled data.","PeriodicalId":6522,"journal":{"name":"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"25 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2017.8247660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Virtual metrology is an important tool for industrial automation. To accurately build regression models for virtual metrology, we consider semi-supervised learning where labeled data are expensive to collect, but unlabeled data are abundant. In such a scenario, due to the scarcity of labeled data, traditional single-view learning methods face the risk of overfitting. To address the overfitting issue, we develop a Partial Co-training framework, which is an extension of the original co-training approach by means of an undirected probabilistic graphical model. Unlike other co-training techniques, this model creates a partial view by shrinking the original feature space, and makes use of this partial-view to provide guidance information for improving the complete-view model. Our approach is validated with data from two manufacturing applications. The results indicate that a consistent and robust estimation is achievable with very limited labeled data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
虚拟计量的部分协同训练
虚拟计量是实现工业自动化的重要工具。为了准确地建立虚拟计量的回归模型,我们考虑半监督学习,其中标记数据收集成本高,但未标记数据丰富。在这种情况下,由于标记数据的稀缺,传统的单视图学习方法面临过拟合的风险。为了解决过拟合问题,我们开发了一个部分协同训练框架,它是原始协同训练方法的扩展,通过无向概率图模型。与其他协同训练技术不同,该模型通过缩小原始特征空间生成局部视图,并利用该局部视图为改进完整视图模型提供指导信息。我们的方法通过两个制造应用程序的数据进行了验证。结果表明,在非常有限的标记数据下,可以实现一致和稳健的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Practical and Formal Security Risk Analysis of IoT (Internet of Things) Applications Modeling Misbehavior Detection Timeliness in VANETs Embedding Anomaly Detection Autoencoders for Wind Turbines The Beremiz PLC: Adding Support for Industrial Communication Protocols Using code generated by MATLAB for the Mold Level Control System of a Continuous Slab Caster in ArcelorMittal Gent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1