Probabilistic Signal Network Models from Multiple Replicates of Sparse Time-Course Data

Kristopher L. Patton, D. J. John, J. Norris
{"title":"Probabilistic Signal Network Models from Multiple Replicates of Sparse Time-Course Data","authors":"Kristopher L. Patton, D. J. John, J. Norris","doi":"10.1109/BIBM.2011.78","DOIUrl":null,"url":null,"abstract":"has sparse data with the number of time points being less than the number of proteins. Usually, each replicate is modeled separately, however, here all the information in each of the replicates is used to make a composite inference about the signal network. The composite inference comes from combining well structured Bayesian probabilistic modeling with a multi-faceted Markov Chain Monte Carlo algorithm. Based on simulations which investigate many different types of network interactions and experimental variabilities, the composite examination uncovers many important relationships within the network.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"37 1","pages":"450-455"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2011.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

has sparse data with the number of time points being less than the number of proteins. Usually, each replicate is modeled separately, however, here all the information in each of the replicates is used to make a composite inference about the signal network. The composite inference comes from combining well structured Bayesian probabilistic modeling with a multi-faceted Markov Chain Monte Carlo algorithm. Based on simulations which investigate many different types of network interactions and experimental variabilities, the composite examination uncovers many important relationships within the network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏时程数据多重重复的概率信号网络模型
具有时间点数量小于蛋白质数量的稀疏数据。通常,每个复制都是单独建模的,但是在这里,每个复制中的所有信息都用于对信号网络进行复合推断。复合推理是将结构良好的贝叶斯概率模型与多面马尔可夫链蒙特卡罗算法相结合的结果。基于模拟研究了许多不同类型的网络相互作用和实验变量,复合检验揭示了网络中许多重要的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of protein architectures inferred from phylogenomic analysis of CATH Hierarchical modeling of alternative exon usage associations with survival 3D point cloud sensors for low-cost medical in-situ visualization Bayesian Classifiers for Chemical Toxicity Prediction Normal mode analysis of protein structure dynamics based on residue contact energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1