3D point cloud sensors for low-cost medical in-situ visualization

Alessio Pierluigi Placitelli, Luigi Gallo
{"title":"3D point cloud sensors for low-cost medical in-situ visualization","authors":"Alessio Pierluigi Placitelli, Luigi Gallo","doi":"10.1109/BIBMW.2011.6112435","DOIUrl":null,"url":null,"abstract":"Medical in-situ visualization deals with the display of patient specific imaging data at the location where they actually are. To be effective, it requires high end I/O devices, and computationally expensive and time-consuming algorithms. In this paper, we explore the potential simplifications derived from the use of 3D point cloud sensors in medical augmented reality applications by designing a low-cost system that takes advantage of depth data to apply medical imagery to live video streams of patients.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"16 1 1","pages":"596-597"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2011.6112435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Medical in-situ visualization deals with the display of patient specific imaging data at the location where they actually are. To be effective, it requires high end I/O devices, and computationally expensive and time-consuming algorithms. In this paper, we explore the potential simplifications derived from the use of 3D point cloud sensors in medical augmented reality applications by designing a low-cost system that takes advantage of depth data to apply medical imagery to live video streams of patients.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于低成本医疗现场可视化的三维点云传感器
医学现场可视化处理的是在患者实际所在位置显示患者特定的成像数据。为了提高效率,它需要高端的I/O设备,以及计算成本高、耗时长的算法。在本文中,我们通过设计一个低成本的系统,探索了在医疗增强现实应用中使用3D点云传感器的潜在简化,该系统利用深度数据将医疗图像应用于患者的实时视频流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of protein architectures inferred from phylogenomic analysis of CATH Hierarchical modeling of alternative exon usage associations with survival 3D point cloud sensors for low-cost medical in-situ visualization Bayesian Classifiers for Chemical Toxicity Prediction Normal mode analysis of protein structure dynamics based on residue contact energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1