Optimizing support vector machine parameters using cuckoo search algorithm via cross validation

Akkawat Puntura, N. Theera-Umpon, S. Auephanwiriyakul
{"title":"Optimizing support vector machine parameters using cuckoo search algorithm via cross validation","authors":"Akkawat Puntura, N. Theera-Umpon, S. Auephanwiriyakul","doi":"10.1109/ICCSCE.2016.7893553","DOIUrl":null,"url":null,"abstract":"Support vector machine is one of the most popular techniques for solving classification problems. It is known that the choice of parameters directly affects its performance. This problem can be solved using a search algorithm which is suitable optimization technique for the parameter optimization. In this research, we propose a method to determine the optimal parameters for support vector machines using the cuckoo search algorithm via maximization of the average accuracy from k-fold cross validation. Our experimental results show that the cuckoo search algorithm provides very good convergence rate and outcomes. The comparison between its performance and another population based optimization namely the particle swarm optimization is also performed. It shows that the cuckoo search algorithm yields better convergence rate and outcomes than the particle swarm optimization in most datasets. It implies that the mechanism of cuckoo search algorithm is efficient for this parameter optimization problem and is more effective than the particle swarm optimization in this particular problem.","PeriodicalId":6540,"journal":{"name":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"37 1","pages":"102-107"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE.2016.7893553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Support vector machine is one of the most popular techniques for solving classification problems. It is known that the choice of parameters directly affects its performance. This problem can be solved using a search algorithm which is suitable optimization technique for the parameter optimization. In this research, we propose a method to determine the optimal parameters for support vector machines using the cuckoo search algorithm via maximization of the average accuracy from k-fold cross validation. Our experimental results show that the cuckoo search algorithm provides very good convergence rate and outcomes. The comparison between its performance and another population based optimization namely the particle swarm optimization is also performed. It shows that the cuckoo search algorithm yields better convergence rate and outcomes than the particle swarm optimization in most datasets. It implies that the mechanism of cuckoo search algorithm is efficient for this parameter optimization problem and is more effective than the particle swarm optimization in this particular problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于交叉验证的布谷鸟搜索算法优化支持向量机参数
支持向量机是解决分类问题最流行的技术之一。众所周知,参数的选择直接影响其性能。这个问题可以用搜索算法来解决,搜索算法是一种适合于参数优化的优化技术。在本研究中,我们提出了一种利用布谷鸟搜索算法通过最大化k-fold交叉验证的平均精度来确定支持向量机最优参数的方法。实验结果表明,布谷鸟搜索算法具有很好的收敛速度和结果。并将其性能与另一种基于种群的优化算法即粒子群优化算法进行了比较。结果表明,在大多数数据集上,布谷鸟搜索算法的收敛速度和结果都优于粒子群算法。这表明布谷鸟搜索算法的机制对于该参数优化问题是有效的,并且比粒子群算法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RVP-FLMS: A robust variable power fractional LMS algorithm Verification of nine-phase PMSM model in d-q coordinates with mutual couplings Gamified outcomes-based teaching and learning assessment tool for Mapúa Institute of Technology Empirical testing of prototype real-time multi-hop MAC for Wireless Sensor Networks Improving intrusion detection system detection accuracy and reducing learning time by combining selected features selection and parameters optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1