{"title":"Certification Pathway for 3D Printed Parts - Unlocking the Barriers to Accelerate the Adoption of Additive Manufacturing in Offshore Industry","authors":"S. Kandukuri, Brice Le Gallo","doi":"10.4043/30671-ms","DOIUrl":null,"url":null,"abstract":"\n Offshore industry assets are capital intensive and downtime can have severe financial consequences. Additive manufacturing (AM) based supply chains can potentially offer offshore industry stakeholders a strong value and a competitive advantage, from lower costs and lead times to greater flexibility and agility. However, the current adoption level of AM for the offshore industry is very limited, despite the consensus that such technology could have potential applications for spare parts, repair and even new builds. While adoption of additive manufacturing could be a source of positive change, inadequate understanding of requirements regarding approval, qualification and certification processes required by regulatory authorities could hinder the progress of AM adoption in the offshore industry.\n Currently, there are only a handful of additive manufacturing standards available for early adopters of AM technology. Hence, costly and time-consuming nonstandard testing to ensure the integrity of the 3D printed parts is deterring the wider applications of additive manufacturing in the offshore sector, underscoring the need to develop optimal practice guidelines and standards from design to part build to operation.\n This paper aims to highlight several key challenges that hinder the adoption of AM in the offshore sector and to propose various solutions that can help to overcome these. Due to its novel approach, the risk-based certification pathway discussed in this paper will help the offshore industry and its supply chain ecosystem to build trust and confidence in the adoption of this emerging technology, which otherwise might not be possible.","PeriodicalId":10925,"journal":{"name":"Day 3 Wed, May 06, 2020","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, May 06, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/30671-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Offshore industry assets are capital intensive and downtime can have severe financial consequences. Additive manufacturing (AM) based supply chains can potentially offer offshore industry stakeholders a strong value and a competitive advantage, from lower costs and lead times to greater flexibility and agility. However, the current adoption level of AM for the offshore industry is very limited, despite the consensus that such technology could have potential applications for spare parts, repair and even new builds. While adoption of additive manufacturing could be a source of positive change, inadequate understanding of requirements regarding approval, qualification and certification processes required by regulatory authorities could hinder the progress of AM adoption in the offshore industry.
Currently, there are only a handful of additive manufacturing standards available for early adopters of AM technology. Hence, costly and time-consuming nonstandard testing to ensure the integrity of the 3D printed parts is deterring the wider applications of additive manufacturing in the offshore sector, underscoring the need to develop optimal practice guidelines and standards from design to part build to operation.
This paper aims to highlight several key challenges that hinder the adoption of AM in the offshore sector and to propose various solutions that can help to overcome these. Due to its novel approach, the risk-based certification pathway discussed in this paper will help the offshore industry and its supply chain ecosystem to build trust and confidence in the adoption of this emerging technology, which otherwise might not be possible.