Noncommutative-Geometry Wormholes Based on the Casimir Effect

P. Kuhfittig
{"title":"Noncommutative-Geometry Wormholes Based on the Casimir Effect","authors":"P. Kuhfittig","doi":"10.4236/jhepgc.2023.91022","DOIUrl":null,"url":null,"abstract":"While wormholes are as good a prediction of Einstein's theory as black holes, they are subject to severe restrictions from quantum field theory. In particular, holding a wormhole open requires a violation of the null energy condition, calling for the existence of exotic matter. The Casimir effect has shown that this physical requirement can be met on a small scale, thereby solving a key conceptual problem. The Casimir effect does not, however, guarantee that the small-scale violation is sufficient for supporting a macroscopic wormhole. The purpose of this paper is to connect the Casimir effect to noncommutative geometry, which also aims to accommodate small-scale effects, the difference being that these can now be viewed as intrinsic properties of spacetime. As a result, the noncommutative effects can be implemented by modifying only the energy momentum tensor in the Einstein field equations, while leaving the Einstein tensor unchanged. The wormhole can therefore be macroscopic in spite of the small Casimir effect.","PeriodicalId":59175,"journal":{"name":"高能物理(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"高能物理(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/jhepgc.2023.91022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While wormholes are as good a prediction of Einstein's theory as black holes, they are subject to severe restrictions from quantum field theory. In particular, holding a wormhole open requires a violation of the null energy condition, calling for the existence of exotic matter. The Casimir effect has shown that this physical requirement can be met on a small scale, thereby solving a key conceptual problem. The Casimir effect does not, however, guarantee that the small-scale violation is sufficient for supporting a macroscopic wormhole. The purpose of this paper is to connect the Casimir effect to noncommutative geometry, which also aims to accommodate small-scale effects, the difference being that these can now be viewed as intrinsic properties of spacetime. As a result, the noncommutative effects can be implemented by modifying only the energy momentum tensor in the Einstein field equations, while leaving the Einstein tensor unchanged. The wormhole can therefore be macroscopic in spite of the small Casimir effect.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卡西米尔效应的非交换几何虫洞
虽然虫洞和黑洞一样能很好地预测爱因斯坦的理论,但它们受到量子场论的严格限制。特别是,保持虫洞打开需要违反零能量条件,要求存在外来物质。卡西米尔效应表明,这种物理要求可以在小尺度上得到满足,从而解决了一个关键的概念问题。然而,卡西米尔效应并不能保证小尺度的破坏足以支持宏观虫洞。本文的目的是将卡西米尔效应与非对易几何联系起来,后者也旨在适应小尺度效应,不同之处在于这些现在可以被视为时空的内在属性。因此,非交换效应可以通过只修改爱因斯坦场方程中的能量动量张量来实现,而保持爱因斯坦张量不变。因此虫洞可以是宏观的,尽管卡西米尔效应很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
225
期刊最新文献
Black Holes and the Third Law of Thermodynamics Revisited Noncommutative-Geometry Wormholes Based on the Casimir Effect Generation of Lepton Masses Complementary to Higgs Using “Particle Density” of “Graviton Gas”, to Obtain Value of Cosmological Constant The Quantum Chromodynamics Gas Density Drop and the General Theory of Relativity Ether
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1