{"title":"Fault Feature Extraction for Anchor Bolt Loosening of Escalator Based on EWT and Bispectrum Analysis","authors":"Zheng Yan","doi":"10.17762/converter.219","DOIUrl":null,"url":null,"abstract":"Escalator is an essential large-scale public transportation equipment. Once the failure occurs, it will inevitably affect the operation and even cause safety accidents. As an important part of the structure of escalator, the loosening of the anchor bolt will lead to abnormal operation of escalator. Aiming at the current difficultyin extracting the fault features of anchor bolt loosening, a fault feature extraction method of escalator anchor loosening is constructed based on empirical wavelet transform (EWT) and bispectrum analysis. First, perform EWT decomposition of the original footing vibration acceleration signal to obtain a series of empirical mode functions(EMFs).Then, for each empirical mode function, the bispectrum was calculated by using bispectrum analysis method, and six texture features of the bispectrum were extracted as fault feature vectors by means of gray-gradient co-occurrence matrix. Finally, the extracted multi-scale fault feature vectors and bi-directional longshort-term memory (BI-LSTM) were used to classify and identify the four types of fault signals with different degrees of foot loosening, and the fault types of foot loosening were determined. The results show that the feature extraction method based on empirical wavelet decomposition and bispectrum analysis can more effectively identify the loosening level of anchor bolts.","PeriodicalId":10707,"journal":{"name":"CONVERTER","volume":"354 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CONVERTER","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17762/converter.219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Escalator is an essential large-scale public transportation equipment. Once the failure occurs, it will inevitably affect the operation and even cause safety accidents. As an important part of the structure of escalator, the loosening of the anchor bolt will lead to abnormal operation of escalator. Aiming at the current difficultyin extracting the fault features of anchor bolt loosening, a fault feature extraction method of escalator anchor loosening is constructed based on empirical wavelet transform (EWT) and bispectrum analysis. First, perform EWT decomposition of the original footing vibration acceleration signal to obtain a series of empirical mode functions(EMFs).Then, for each empirical mode function, the bispectrum was calculated by using bispectrum analysis method, and six texture features of the bispectrum were extracted as fault feature vectors by means of gray-gradient co-occurrence matrix. Finally, the extracted multi-scale fault feature vectors and bi-directional longshort-term memory (BI-LSTM) were used to classify and identify the four types of fault signals with different degrees of foot loosening, and the fault types of foot loosening were determined. The results show that the feature extraction method based on empirical wavelet decomposition and bispectrum analysis can more effectively identify the loosening level of anchor bolts.