Reliability mechanisms and lifetime extrapolation methods for scaled interconnect technologies

K. Croes, C. Wu, D. Kocaay, J. Bommels, Z. Tokei
{"title":"Reliability mechanisms and lifetime extrapolation methods for scaled interconnect technologies","authors":"K. Croes, C. Wu, D. Kocaay, J. Bommels, Z. Tokei","doi":"10.1109/IITC-MAM.2015.7325585","DOIUrl":null,"url":null,"abstract":"We review our current understanding of the degradation mechanisms in scaled interconnects. Concerns on the applicability of today's reliability evaluation methods are expressed. Regarding electromigration (EM), both scaling line dimensions and using mechanically weaker intermetal dielectrics (IMDs) have a negative impact on its performance, where remedial measures to overcome this downward trend are discussed. With aggressively scaled barriers, we also show that EM test methodology adaptation towards constant voltage testing might be needed. Regarding dielectric reliability, we quantify the reliability degradation induced by both k-value and spacing reduction. Also, we review the current understanding on lifetime models used for predicting high field data to lower fields. Both for copper and dielectric reliability, we highlight that the development of ways to account for process variability during lifetime prediction will become key in the future.","PeriodicalId":6514,"journal":{"name":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","volume":"40 1","pages":"295-298"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC-MAM.2015.7325585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We review our current understanding of the degradation mechanisms in scaled interconnects. Concerns on the applicability of today's reliability evaluation methods are expressed. Regarding electromigration (EM), both scaling line dimensions and using mechanically weaker intermetal dielectrics (IMDs) have a negative impact on its performance, where remedial measures to overcome this downward trend are discussed. With aggressively scaled barriers, we also show that EM test methodology adaptation towards constant voltage testing might be needed. Regarding dielectric reliability, we quantify the reliability degradation induced by both k-value and spacing reduction. Also, we review the current understanding on lifetime models used for predicting high field data to lower fields. Both for copper and dielectric reliability, we highlight that the development of ways to account for process variability during lifetime prediction will become key in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
规模化互连技术的可靠性机制和寿命外推方法
我们回顾了目前对尺度互连中退化机制的理解。对现有可靠性评估方法的适用性表示了关注。对于电迁移(EM),垢线尺寸和使用机械较弱的金属间介电体(imd)都会对其性能产生负面影响,本文讨论了克服这种下降趋势的补救措施。对于大规模的障碍,我们还表明可能需要适应恒电压测试的电磁测试方法。对于介质可靠性,我们量化了k值和间距减小引起的可靠性退化。此外,我们回顾了目前对用于预测高场数据到低场数据的寿命模型的理解。对于铜和介质可靠性,我们强调,在寿命预测中考虑工艺变异性的方法的发展将成为未来的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-voltage monolithic 3D capacitors based on through-silicon-via technology Wafer level metallic bonding: Voiding mechanisms in copper layers A flexible top metal structure to improve ultra low-k reliability Nanostructured material formation for beyond Si devices Ni silicides formation: Use of Ge and Pt to study the diffusing species, lateral growth and relaxation mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1