Non-uniform sampling based ADC architecture using an adaptive level-crossing technique

V. M. Silva, A. A. L. Souza, S. Catunda, R. Freire
{"title":"Non-uniform sampling based ADC architecture using an adaptive level-crossing technique","authors":"V. M. Silva, A. A. L. Souza, S. Catunda, R. Freire","doi":"10.1109/I2MTC.2017.7969771","DOIUrl":null,"url":null,"abstract":"This paper presents a non-uniform sampling analog-to-digital converter (ADC) architecture using an adaptive level-crossing technique. The architecture can be dynamically configured through three parameters that allow the user to match the ADC to the signal to be acquired or to application constraints. When applied to sparse signals, this architecture outperforms uniform sampling architectures. In the case of an Electrocardiogram (ECG) signal, our architecture showed gains of up to 10 dB of signal to noise ratio (SNR) when considering the same number of samples of uniform sampling. When the same SNR is considered, our architecture allows reductions in excess of 50%. The architecture was implemented with FPGA and general purpose components, and showed a response time of about 200 μs, which could be further reduced in an integrated implementation.","PeriodicalId":93508,"journal":{"name":"... IEEE International Instrumentation and Measurement Technology Conference. IEEE International Instrumentation and Measurement Technology Conference","volume":"74 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE International Instrumentation and Measurement Technology Conference. IEEE International Instrumentation and Measurement Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2017.7969771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a non-uniform sampling analog-to-digital converter (ADC) architecture using an adaptive level-crossing technique. The architecture can be dynamically configured through three parameters that allow the user to match the ADC to the signal to be acquired or to application constraints. When applied to sparse signals, this architecture outperforms uniform sampling architectures. In the case of an Electrocardiogram (ECG) signal, our architecture showed gains of up to 10 dB of signal to noise ratio (SNR) when considering the same number of samples of uniform sampling. When the same SNR is considered, our architecture allows reductions in excess of 50%. The architecture was implemented with FPGA and general purpose components, and showed a response time of about 200 μs, which could be further reduced in an integrated implementation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非均匀采样的ADC结构,采用自适应平交技术
本文提出了一种采用自适应平交技术的非均匀采样模数转换器(ADC)结构。该架构可以通过三个参数动态配置,允许用户将ADC与要采集的信号或应用约束相匹配。当应用于稀疏信号时,这种结构优于均匀采样结构。在心电图(ECG)信号的情况下,当考虑均匀采样的相同数量的样本时,我们的架构显示出高达10 dB的信噪比(SNR)增益。当考虑相同的信噪比时,我们的架构允许降低超过50%。该体系结构采用FPGA和通用器件实现,响应时间约为200 μs,在集成实现中可进一步缩短响应时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Digital Interface Circuit for Three-wire Connected Resistance Thermometers Performance Evaluation of Simple Digital Measurement Platform for Remotely-Located RTD Applications Classification and Clustering for predicting breathalyzer failures Modeling a Virtual Flow Sensor in a Sugar-Energy Plant using Artificial Neural Network Oxygen Uptake Rate Measurement Using Sigma Delta Modulator in the Biological Domain in Activated Sludge Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1