Intrinsic image decomposition using focal stacks

Saurabh Saini, P. Sakurikar, P J Narayanan
{"title":"Intrinsic image decomposition using focal stacks","authors":"Saurabh Saini, P. Sakurikar, P J Narayanan","doi":"10.1145/3009977.3010046","DOIUrl":null,"url":null,"abstract":"In this paper, we presents a novel method (RGBF-IID) for intrinsic image decomposition of a wild scene without any restrictions on the complexity, illumination or scale of the image. We use focal stacks of the scene as input. A focal stack captures a scene at varying focal distances. Since focus depends on distance to the object, this representation has information beyond an RGB image towards an RGBD image with depth. We call our representation an RGBF image to highlight this. We use a robust focus measure and generalized random walk algorithm to compute dense probability maps across the stack. These maps are used to define sparse local and global pixel neighbourhoods, adhering to the structure of the underlying 3D scene. We use these neighbourhood correspondences with standard chromaticity assumptions as constraints in an optimization system. We present our results on both indoor and outdoor scenes using manually captured stacks of random objects under natural as well as artificial lighting conditions. We also test our system on a larger dataset of synthetically generated focal stacks from NYUv2 and MPI Sintel datasets and show competitive performance against current state-of-the-art IID methods that use RGBD images. Our method provides a strong evidence for the potential of RGBF modality in place of RGBD in computer vision.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"49 1","pages":"88:1-88:8"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3010046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we presents a novel method (RGBF-IID) for intrinsic image decomposition of a wild scene without any restrictions on the complexity, illumination or scale of the image. We use focal stacks of the scene as input. A focal stack captures a scene at varying focal distances. Since focus depends on distance to the object, this representation has information beyond an RGB image towards an RGBD image with depth. We call our representation an RGBF image to highlight this. We use a robust focus measure and generalized random walk algorithm to compute dense probability maps across the stack. These maps are used to define sparse local and global pixel neighbourhoods, adhering to the structure of the underlying 3D scene. We use these neighbourhood correspondences with standard chromaticity assumptions as constraints in an optimization system. We present our results on both indoor and outdoor scenes using manually captured stacks of random objects under natural as well as artificial lighting conditions. We also test our system on a larger dataset of synthetically generated focal stacks from NYUv2 and MPI Sintel datasets and show competitive performance against current state-of-the-art IID methods that use RGBD images. Our method provides a strong evidence for the potential of RGBF modality in place of RGBD in computer vision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用焦点叠加进行图像的内禀分解
本文提出了一种不受图像复杂度、光照和尺度限制的野生场景内禀图像分解方法(RGBF-IID)。我们使用场景的焦点堆栈作为输入。焦堆捕捉不同焦距的场景。由于焦点取决于与对象的距离,因此这种表示具有超越RGB图像的信息,而是具有深度的RGBD图像。为了强调这一点,我们称我们的表示为RGBF图像。我们使用鲁棒焦点度量和广义随机漫步算法来计算堆栈上的密集概率图。这些地图用于定义稀疏的局部和全局像素邻域,遵循底层3D场景的结构。我们使用这些邻域对应与标准色度假设作为优化系统的约束。我们在自然和人工照明条件下使用手动捕获的随机物体堆栈在室内和室外场景中展示了我们的结果。我们还在NYUv2和MPI sinintel数据集合成的焦点堆栈的更大数据集上测试了我们的系统,并显示了与当前使用RGBD图像的最先进的IID方法相比具有竞争力的性能。我们的方法为RGBF模式在计算机视觉中取代RGBD的潜力提供了强有力的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Multi-Scale Residual Dense Dehazing Network (MSRDNet) for Single Image Dehazing✱ Robust Brain State Decoding using Bidirectional Long Short Term Memory Networks in functional MRI. ICVGIP 2018: 11th Indian Conference on Computer Vision, Graphics and Image Processing, Hyderabad, India, 18-22 December, 2018 Towards semantic visual representation: augmenting image representation with natural language descriptors Adaptive artistic stylization of images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1