A Novel Multi-Scale Residual Dense Dehazing Network (MSRDNet) for Single Image Dehazing✱

Chippy M. Manu, G. SreeniK.
{"title":"A Novel Multi-Scale Residual Dense Dehazing Network (MSRDNet) for Single Image Dehazing✱","authors":"Chippy M. Manu, G. SreeniK.","doi":"10.1145/3571600.3571601","DOIUrl":null,"url":null,"abstract":"Dehazing is a difficult process because of the damage caused by the non-uniform fog and haze distribution in images. To address these issues, a Multi-Scale Residual dense Dehazing Network (MSRDNet) is proposed in this paper. A Contextual feature extraction module (CFM) for extracting multi-scale features and an Adaptive Residual Dense Module (ARDN) are used as sub-modules of MSRDNet. Moreover, all the hierarchical features extracted by each ARDN are fused, which helps to detect hazy maps of varying lengths with multi-scale features. This framework outperforms the state-of-the-art dehazing methods in removing haze while maintaining and restoring image detail in real-world and synthetic images captured under various scenarios.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"122 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3571600.3571601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dehazing is a difficult process because of the damage caused by the non-uniform fog and haze distribution in images. To address these issues, a Multi-Scale Residual dense Dehazing Network (MSRDNet) is proposed in this paper. A Contextual feature extraction module (CFM) for extracting multi-scale features and an Adaptive Residual Dense Module (ARDN) are used as sub-modules of MSRDNet. Moreover, all the hierarchical features extracted by each ARDN are fused, which helps to detect hazy maps of varying lengths with multi-scale features. This framework outperforms the state-of-the-art dehazing methods in removing haze while maintaining and restoring image detail in real-world and synthetic images captured under various scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的多尺度残差密集去雾网络(MSRDNet),用于单幅图像的译者去雾
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Multi-Scale Residual Dense Dehazing Network (MSRDNet) for Single Image Dehazing✱ Robust Brain State Decoding using Bidirectional Long Short Term Memory Networks in functional MRI. ICVGIP 2018: 11th Indian Conference on Computer Vision, Graphics and Image Processing, Hyderabad, India, 18-22 December, 2018 Towards semantic visual representation: augmenting image representation with natural language descriptors Adaptive artistic stylization of images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1