Automatic Neighborhood Search Clustering Algorithm Based on Feature Weighted Density

Tao Zhang, Yuqing He, Decai Li, Yuanye Xu
{"title":"Automatic Neighborhood Search Clustering Algorithm Based on Feature Weighted Density","authors":"Tao Zhang, Yuqing He, Decai Li, Yuanye Xu","doi":"10.18178/ijke.2023.9.1.137","DOIUrl":null,"url":null,"abstract":"— The failure of traditional clustering methods on high-dimensional data has been a thorny problem. Therefore, we propose a simple but effective mean shift feature weighted deformation method (WDNS) to calculate the density value of high-dimensional data points by learning the weights of the features. The neighborhood search is then carried out using the density center in the decision diagram as the starting point, and the points of the same cluster are merged to finally complete the clustering. The experimental results show that the algorithm has higher clustering accuracy than the six existing clustering algorithms. In addition, it has the outstanding feature of automatic parameter setting, which is not available in its peers. In summary, this work can improve the state-of-the-art of clustering algorithms.","PeriodicalId":88527,"journal":{"name":"International journal of knowledge engineering and soft data paradigms","volume":"174 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of knowledge engineering and soft data paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijke.2023.9.1.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

— The failure of traditional clustering methods on high-dimensional data has been a thorny problem. Therefore, we propose a simple but effective mean shift feature weighted deformation method (WDNS) to calculate the density value of high-dimensional data points by learning the weights of the features. The neighborhood search is then carried out using the density center in the decision diagram as the starting point, and the points of the same cluster are merged to finally complete the clustering. The experimental results show that the algorithm has higher clustering accuracy than the six existing clustering algorithms. In addition, it has the outstanding feature of automatic parameter setting, which is not available in its peers. In summary, this work can improve the state-of-the-art of clustering algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征加权密度的自动邻域搜索聚类算法
-传统聚类方法在高维数据上的失败一直是一个棘手的问题。因此,我们提出了一种简单而有效的均值偏移特征加权变形方法(WDNS),通过学习特征的权重来计算高维数据点的密度值。然后以决策图中的密度中心为起点进行邻域搜索,合并同一聚类的点,最终完成聚类。实验结果表明,该算法比现有的6种聚类算法具有更高的聚类精度。此外,它还具有自动设定参数的突出特点,这是同类产品所不具备的。总之,这项工作可以提高聚类算法的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stable Estimation of the Slant Parameter in Skew Normal Regression via an MM Algorithm and Ridge Shrinkage Automatic Neighborhood Search Clustering Algorithm Based on Feature Weighted Density Quality Assessment of Web and APP Design Patterns Knowledge Taxonomy Model for Determining Indicators of Natural Tourism Potential An Evolution Approach for Pre-trained Neural Network Pruning without Original Training Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1