Semantic Segmentation under Severe Imaging Conditions

Hoda Imam, Bassem A. Abdullah, H. A. E. Munim
{"title":"Semantic Segmentation under Severe Imaging Conditions","authors":"Hoda Imam, Bassem A. Abdullah, H. A. E. Munim","doi":"10.1109/DICTA47822.2019.8945923","DOIUrl":null,"url":null,"abstract":"Many challenges face semantic understanding of urban street scenes. Two of the most important challenges are foggy and blurred scenes. In this work we make a comparison between two of the most powerful methods in semantic segmentation. These techniques are DeepLabv3+ and PSPNet which achieve the highest mIoU and approximately close to each other on the Cityscapes dataset testing using both fine and coarse data for training. DeebLabv3+ and PSPNet achieved an accuracy of 82.1 % and 81.2% on Cityscapes test set respectively. Our experimental results discuss the performance of these methods on two of the hardest challenges in semantic segmentation which are foggy and blurred scenes.","PeriodicalId":6696,"journal":{"name":"2019 Digital Image Computing: Techniques and Applications (DICTA)","volume":"303 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA47822.2019.8945923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many challenges face semantic understanding of urban street scenes. Two of the most important challenges are foggy and blurred scenes. In this work we make a comparison between two of the most powerful methods in semantic segmentation. These techniques are DeepLabv3+ and PSPNet which achieve the highest mIoU and approximately close to each other on the Cityscapes dataset testing using both fine and coarse data for training. DeebLabv3+ and PSPNet achieved an accuracy of 82.1 % and 81.2% on Cityscapes test set respectively. Our experimental results discuss the performance of these methods on two of the hardest challenges in semantic segmentation which are foggy and blurred scenes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
严重成像条件下的语义分割
城市街景的语义理解面临许多挑战。两个最重要的挑战是雾蒙蒙和模糊的场景。在这项工作中,我们比较了两种最强大的语义分割方法。这些技术是DeepLabv3+和PSPNet,它们实现了最高的mIoU,并且在使用精细和粗糙数据进行训练的cityscape数据集测试中彼此近似接近。DeebLabv3+和PSPNet在cityscape测试集上的准确率分别达到82.1%和81.2%。我们的实验结果讨论了这些方法在语义分割中两个最困难的挑战,即模糊和模糊场景的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Micro Target Detection through Local Motion Feedback in Biologically Inspired Algorithms Hyperspectral Image Analysis for Writer Identification using Deep Learning Robust Image Watermarking Framework Powered by Convolutional Encoder-Decoder Network Single View 3D Point Cloud Reconstruction using Novel View Synthesis and Self-Supervised Depth Estimation Semantic Segmentation under Severe Imaging Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1