Structure-Based Chemical Shift Prediction Using Random Forests Non-Linear Regression

K. Arun, C. Langmead
{"title":"Structure-Based Chemical Shift Prediction Using Random Forests Non-Linear Regression","authors":"K. Arun, C. Langmead","doi":"10.1142/9781860947292_0035","DOIUrl":null,"url":null,"abstract":"Protein nuclear magnetic resonance (NMR) chemical shifts are among the most accurately measurable spectroscopic parameters and are closely correlated to protein structure because of their dependence on the local electronic environment. The precise nature of this correlation remains largely unknown. Accurate prediction of chemical shifts from existing structures’ atomic co-ordinates will permit close study of this relationship. This paper presents a novel non- linear regression based approach to chemical shift prediction from protein structure. The regression model employed combines quantum, classical and empirical variables and provides statistically signifi cant improved prediction accuracy over existing chemical shift predictors, across protein backbone atom types. The results presented here were obtained using the Random Forest regression algorithm on a protein entry data set derived from the RefDB re-referenced chemical shift database.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"41 1","pages":"317-326"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947292_0035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Protein nuclear magnetic resonance (NMR) chemical shifts are among the most accurately measurable spectroscopic parameters and are closely correlated to protein structure because of their dependence on the local electronic environment. The precise nature of this correlation remains largely unknown. Accurate prediction of chemical shifts from existing structures’ atomic co-ordinates will permit close study of this relationship. This paper presents a novel non- linear regression based approach to chemical shift prediction from protein structure. The regression model employed combines quantum, classical and empirical variables and provides statistically signifi cant improved prediction accuracy over existing chemical shift predictors, across protein backbone atom types. The results presented here were obtained using the Random Forest regression algorithm on a protein entry data set derived from the RefDB re-referenced chemical shift database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于结构的随机森林非线性回归化学位移预测
蛋白质核磁共振(NMR)化学位移是最精确可测量的光谱参数之一,并且由于其依赖于局部电子环境而与蛋白质结构密切相关。这种相关性的确切性质在很大程度上仍然未知。从现有结构的原子坐标中准确预测化学位移,将允许对这种关系进行深入研究。本文提出了一种基于非线性回归的蛋白质结构化学位移预测方法。所采用的回归模型结合了量子变量、经典变量和经验变量,并在统计上显著提高了现有的跨蛋白质主链原子类型的化学位移预测器的预测精度。本文给出的结果是使用随机森林回归算法对来自RefDB重新引用的化学位移数据库的蛋白质输入数据集获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning Privacy-Utility Tradeoff in Genomic Studies Using Selective SNP Hiding. The Future of Bioinformatics CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS. Predicting Nucleolar Proteins Using Support-Vector Machines Proceedings of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, 14-17 January 2008, Kyoto, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1