Daniele Bertoglio, J. Verhaeghe, A. Miranda, I. Kertész, Klaudia A. Cybulska, Špela Korat, L. Wyffels, S. Stroobants, L. Mrzljak, C. Dominguez, Longbin Liu, M. Skinbjerg, I. Muñoz-Sanjuán, S. Staelens
{"title":"Validation and noninvasive kinetic modeling of [11C]UCB-J PET imaging in mice","authors":"Daniele Bertoglio, J. Verhaeghe, A. Miranda, I. Kertész, Klaudia A. Cybulska, Špela Korat, L. Wyffels, S. Stroobants, L. Mrzljak, C. Dominguez, Longbin Liu, M. Skinbjerg, I. Muñoz-Sanjuán, S. Staelens","doi":"10.1177/0271678X19864081","DOIUrl":null,"url":null,"abstract":"Synaptic pathology is associated with several brain disorders, thus positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) using the radioligand [11C]UCB-J may provide a tool to measure synaptic alterations. Given the pivotal role of mouse models in understanding neuropsychiatric and neurodegenerative disorders, this study aims to validate and characterize [11C]UCB-J in mice. We performed a blocking study to verify the specificity of the radiotracer to SV2A, examined kinetic models using an image-derived input function (IDIF) for quantification of the radiotracer, and investigated the in vivo metabolism. Regional TACs during baseline showed rapid uptake of [11C]UCB-J into the brain. Pretreatment with levetiracetam confirmed target engagement in a dose-dependent manner. VT (IDIF) values estimated with one- and two-tissue compartmental models (1TCM and 2TCM) were highly comparable (r=0.999, p < 0.0001), with 1TCM performing better than 2TCM for K1 (IDIF). A scan duration of 60 min was sufficient for reliable VT (IDIF) and K1 (IDIF) estimations. In vivo metabolism of [11C]UCB-J was relatively rapid, with a parent fraction of 22.5 ± 4.2% at 15 min p.i. In conclusion, our findings show that [11C]UCB-J selectively binds to SV2A with optimal kinetics in the mouse representing a promising tool to noninvasively quantify synaptic density in comparative or therapeutic studies in neuropsychiatric and neurodegenerative disorder models.","PeriodicalId":15356,"journal":{"name":"Journal of Cerebral Blood Flow & Metabolism","volume":"9 1","pages":"1351 - 1362"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow & Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0271678X19864081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
Synaptic pathology is associated with several brain disorders, thus positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) using the radioligand [11C]UCB-J may provide a tool to measure synaptic alterations. Given the pivotal role of mouse models in understanding neuropsychiatric and neurodegenerative disorders, this study aims to validate and characterize [11C]UCB-J in mice. We performed a blocking study to verify the specificity of the radiotracer to SV2A, examined kinetic models using an image-derived input function (IDIF) for quantification of the radiotracer, and investigated the in vivo metabolism. Regional TACs during baseline showed rapid uptake of [11C]UCB-J into the brain. Pretreatment with levetiracetam confirmed target engagement in a dose-dependent manner. VT (IDIF) values estimated with one- and two-tissue compartmental models (1TCM and 2TCM) were highly comparable (r=0.999, p < 0.0001), with 1TCM performing better than 2TCM for K1 (IDIF). A scan duration of 60 min was sufficient for reliable VT (IDIF) and K1 (IDIF) estimations. In vivo metabolism of [11C]UCB-J was relatively rapid, with a parent fraction of 22.5 ± 4.2% at 15 min p.i. In conclusion, our findings show that [11C]UCB-J selectively binds to SV2A with optimal kinetics in the mouse representing a promising tool to noninvasively quantify synaptic density in comparative or therapeutic studies in neuropsychiatric and neurodegenerative disorder models.