Algorithm 1015

S. Guthe, D. Thuerck
{"title":"Algorithm 1015","authors":"S. Guthe, D. Thuerck","doi":"10.1145/3442348","DOIUrl":null,"url":null,"abstract":"We present a new algorithm for solving the dense linear (sum) assignment problem and an efficient, parallel implementation that is based on the successive shortest path algorithm. More specifically, we introduce the well-known epsilon scaling approach used in the Auction algorithm to approximate the dual variables of the successive shortest path algorithm prior to solving the assignment problem to limit the complexity of the path search. This improves the runtime by several orders of magnitude for hard-to-solve real-world problems, making the runtime virtually independent of how hard the assignment is to find. In addition, our approach allows for using accelerators and/or external compute resources to calculate individual rows of the cost matrix. This enables us to solve problems that are larger than what has been reported in the past, including the ability to efficiently solve problems whose cost matrix exceeds the available systems memory. To our knowledge, this is the first implementation that is able to solve problems with more than one trillion arcs in less than 100 hours on a single machine.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"50 1","pages":"1 - 27"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a new algorithm for solving the dense linear (sum) assignment problem and an efficient, parallel implementation that is based on the successive shortest path algorithm. More specifically, we introduce the well-known epsilon scaling approach used in the Auction algorithm to approximate the dual variables of the successive shortest path algorithm prior to solving the assignment problem to limit the complexity of the path search. This improves the runtime by several orders of magnitude for hard-to-solve real-world problems, making the runtime virtually independent of how hard the assignment is to find. In addition, our approach allows for using accelerators and/or external compute resources to calculate individual rows of the cost matrix. This enables us to solve problems that are larger than what has been reported in the past, including the ability to efficiently solve problems whose cost matrix exceeds the available systems memory. To our knowledge, this is the first implementation that is able to solve problems with more than one trillion arcs in less than 100 hours on a single machine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
算法1015
我们提出了一种求解密集线性(和)分配问题的新算法,以及一种基于连续最短路径算法的高效并行实现。更具体地说,我们引入了拍卖算法中使用的著名的epsilon缩放方法,在解决分配问题之前近似连续最短路径算法的对偶变量,以限制路径搜索的复杂性。对于难以解决的现实问题,这将运行时提高了几个数量级,使运行时实际上独立于找到分配的难度。此外,我们的方法允许使用加速器和/或外部计算资源来计算成本矩阵的各个行。这使我们能够解决比过去报告的更大的问题,包括有效解决成本矩阵超过可用系统内存的问题的能力。据我们所知,这是第一个能够在不到100小时的时间内在一台机器上解决超过一万亿次电弧问题的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Configurable Open-source Data Structure for Distributed Conforming Unstructured Homogeneous Meshes with GPU Support Algorithm 1027: NOMAD Version 4: Nonlinear Optimization with the MADS Algorithm Toward Accurate and Fast Summation Algorithm 1028: VTMOP: Solver for Blackbox Multiobjective Optimization Problems Parallel QR Factorization of Block Low-rank Matrices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1