{"title":"MEHLISSA","authors":"R. Wendt, Stefan Fischer","doi":"10.1145/3411295.3411305","DOIUrl":null,"url":null,"abstract":"In this paper, we present the concept of a complex framework, which is primarily designed to model and simulate the structures of and the processes in the human body and the interaction of nanobots with it. Medical nanobots are envisioned to perform their work in the body, for example by recognizing and destroying cancer cells. They are generally attributed an important role in a future precision medicine-based health system. It is crucial to simulate the use of nanobots in a human body before they are actually used. However, only with a comprehensive body simulation framework, like the presented medical holistic simulation architecture (MEHLISSA), it is possible to achieve meaningful results. As we model the human body as close to reality as feasible, this allows for reliable statements about the effectiveness and efficiency of the use of nanobots in vivo. To illustrate the advantages of an holistic simulation, we discuss the use case of metastasis prevention modelled in MEHLISSA.","PeriodicalId":93611,"journal":{"name":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411295.3411305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we present the concept of a complex framework, which is primarily designed to model and simulate the structures of and the processes in the human body and the interaction of nanobots with it. Medical nanobots are envisioned to perform their work in the body, for example by recognizing and destroying cancer cells. They are generally attributed an important role in a future precision medicine-based health system. It is crucial to simulate the use of nanobots in a human body before they are actually used. However, only with a comprehensive body simulation framework, like the presented medical holistic simulation architecture (MEHLISSA), it is possible to achieve meaningful results. As we model the human body as close to reality as feasible, this allows for reliable statements about the effectiveness and efficiency of the use of nanobots in vivo. To illustrate the advantages of an holistic simulation, we discuss the use case of metastasis prevention modelled in MEHLISSA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toward localization in terahertz-operating energy harvesting software-defined metamaterials: context analysis MEHLISSA A molecular communications framework for understanding the floral transition Powering next-generation industry 4.0 by a self-learning and low-power neuromorphic system A testbed and simulation framework for air-based molecular communication using fluorescein
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1