Replicated Computational Results (RCR) Report for “Adaptive Precision Block-Jacobi for High Performance Preconditioning in the Ginkgo Linear Algebra Software”

S. Osborn
{"title":"Replicated Computational Results (RCR) Report for “Adaptive Precision Block-Jacobi for High Performance Preconditioning in the Ginkgo Linear Algebra Software”","authors":"S. Osborn","doi":"10.1145/3446000","DOIUrl":null,"url":null,"abstract":"The article by Flegar et al. titled “Adaptive Precision Block-Jacobi for High Performance Preconditioning in the Ginkgo Linear Algebra Software” presents a novel, practical implementation of an adaptive precision block-Jacobi preconditioner. Performance results using state-of-the-art GPU architectures for the block-Jacobi preconditioner generation and application demonstrate the practical usability of the method, compared to a traditional full-precision block-Jacobi preconditioner. A production-ready implementation is provided in the Ginkgo numerical linear algebra library. In this report, the Ginkgo library is reinstalled and performance results are generated to perform a comparison to the original results when using Ginkgo’s Conjugate Gradient solver with either the full or the adaptive precision block-Jacobi preconditioner for a suite of test problems on an NVIDIA GPU accelerator. After completing this process, the published results are deemed reproducible.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"16 1","pages":"1 - 4"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article by Flegar et al. titled “Adaptive Precision Block-Jacobi for High Performance Preconditioning in the Ginkgo Linear Algebra Software” presents a novel, practical implementation of an adaptive precision block-Jacobi preconditioner. Performance results using state-of-the-art GPU architectures for the block-Jacobi preconditioner generation and application demonstrate the practical usability of the method, compared to a traditional full-precision block-Jacobi preconditioner. A production-ready implementation is provided in the Ginkgo numerical linear algebra library. In this report, the Ginkgo library is reinstalled and performance results are generated to perform a comparison to the original results when using Ginkgo’s Conjugate Gradient solver with either the full or the adaptive precision block-Jacobi preconditioner for a suite of test problems on an NVIDIA GPU accelerator. After completing this process, the published results are deemed reproducible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“银杏线性代数软件中用于高性能预处理的自适应精确块-雅可比”的重复计算结果(RCR)报告
Flegar等人的文章题为“用于银杏线性代数软件中高性能预处理的自适应精度块- jacobi”,提出了一种新颖的、实用的自适应精度块- jacobi预调节器。与传统的全精度块jacobi预调节器相比,使用最先进的GPU架构进行块jacobi预调节器生成和应用的性能结果证明了该方法的实际可用性。生产就绪的实现在Ginkgo数值线性代数库中提供。在本报告中,重新安装了Ginkgo库,并生成了性能结果,以便在NVIDIA GPU加速器上使用Ginkgo的共轭梯度解算器与完整或自适应精度块- jacobi预调节器进行一组测试问题时,与原始结果进行比较。完成这个过程后,发表的结果被认为是可重复的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Configurable Open-source Data Structure for Distributed Conforming Unstructured Homogeneous Meshes with GPU Support Algorithm 1027: NOMAD Version 4: Nonlinear Optimization with the MADS Algorithm Toward Accurate and Fast Summation Algorithm 1028: VTMOP: Solver for Blackbox Multiobjective Optimization Problems Parallel QR Factorization of Block Low-rank Matrices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1