Comparison of the Acoustic Performance of Wooden Violins and Carbon Fiber Reinforced Polymer Violins Through a Modal Study by Finite Elements Method and Effective Masses
Marcos Zambrano, M. Vergara, José Luis Burgos, Jhonattan Trejo
{"title":"Comparison of the Acoustic Performance of Wooden Violins and Carbon Fiber Reinforced Polymer Violins Through a Modal Study by Finite Elements Method and Effective Masses","authors":"Marcos Zambrano, M. Vergara, José Luis Burgos, Jhonattan Trejo","doi":"10.1115/1.4055192","DOIUrl":null,"url":null,"abstract":"\n Even though string musical instruments made of synthetic materials such as carbon fiber reinforced polymer (CFRP) have respected acoustic performance, but a short manufacturing cycle and low product cost, they do not become an alternative to replace high-quality string instruments made of sound woods. For CFRP violins to approach high acoustic performance wood violins, they must exhibit approximately the same bending stiffness. The CFRP is denser, stiffer, and isotropic compared to the orthotropy of wood. In this work, the acoustic behavior of CFRP violins with the same geometry as high-quality wood violins was compared. A numerical modal study was developed by finite element simulations, comparing two violin top plates, one in CFRP and the other in Picea abies (PA) wood. The simulations were developed in the ansys mechanical software, using the Block Lanczos method with a mesh of 38,216 finite volumes, finding modal patterns for both the CFRP model and the PA model. Mathematical models based on solid state physics such as effective masses and maximum vibration amplitude between models were outlined. Both models were validated against experimental studies developed by other authors. It is concluded that for instruments with the same geometry, a sonorous superiority of the wood over the CFRP was evidenced, which leads to further reinforce the unique, enigmatic, and mythical behavior of violins made of sonorous woods such as the Stradivarius violins.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4055192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Even though string musical instruments made of synthetic materials such as carbon fiber reinforced polymer (CFRP) have respected acoustic performance, but a short manufacturing cycle and low product cost, they do not become an alternative to replace high-quality string instruments made of sound woods. For CFRP violins to approach high acoustic performance wood violins, they must exhibit approximately the same bending stiffness. The CFRP is denser, stiffer, and isotropic compared to the orthotropy of wood. In this work, the acoustic behavior of CFRP violins with the same geometry as high-quality wood violins was compared. A numerical modal study was developed by finite element simulations, comparing two violin top plates, one in CFRP and the other in Picea abies (PA) wood. The simulations were developed in the ansys mechanical software, using the Block Lanczos method with a mesh of 38,216 finite volumes, finding modal patterns for both the CFRP model and the PA model. Mathematical models based on solid state physics such as effective masses and maximum vibration amplitude between models were outlined. Both models were validated against experimental studies developed by other authors. It is concluded that for instruments with the same geometry, a sonorous superiority of the wood over the CFRP was evidenced, which leads to further reinforce the unique, enigmatic, and mythical behavior of violins made of sonorous woods such as the Stradivarius violins.