Cardiac Microstructure: Implications for Electrical Propagation and Defibrillation in the Heart

D. Hooks, K. A. Tomlinson, S. Marsden, I. LeGrice, B. Smaill, A. Pullan, P. Hunter
{"title":"Cardiac Microstructure: Implications for Electrical Propagation and Defibrillation in the Heart","authors":"D. Hooks, K. A. Tomlinson, S. Marsden, I. LeGrice, B. Smaill, A. Pullan, P. Hunter","doi":"10.1161/01.RES.0000031957.70034.89","DOIUrl":null,"url":null,"abstract":"Abstract— Our understanding of the electrophysiological properties of the heart is incomplete. We have investigated two issues that are fundamental to advancing that understanding. First, there has been widespread debate over the mechanisms by which an externally applied shock can influence a sufficient volume of heart tissue to terminate cardiac fibrillation. Second, it has been uncertain whether cardiac tissue should be viewed as an electrically orthotropic structure, or whether its electrical properties are, in fact, isotropic in the plane orthogonal to myofiber direction. In the present study, a computer model that incorporates a detailed three-dimensional representation of cardiac muscular architecture is used to investigate these issues. We describe a bidomain model of electrical propagation solved in a discontinuous domain that accurately represents the microstructure of a transmural block of rat left ventricle. From analysis of the model results, we conclude that (1) the laminar organization of myocytes determines unique electrical properties in three microstructurally defined directions at any point in the ventricular wall of the heart, and (2) interlaminar clefts between layers of cardiomyocytes provide a substrate for bulk activation of the ventricles during defibrillation.","PeriodicalId":10314,"journal":{"name":"Circulation Research: Journal of the American Heart Association","volume":"17 1","pages":"331-338"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"258","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation Research: Journal of the American Heart Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/01.RES.0000031957.70034.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 258

Abstract

Abstract— Our understanding of the electrophysiological properties of the heart is incomplete. We have investigated two issues that are fundamental to advancing that understanding. First, there has been widespread debate over the mechanisms by which an externally applied shock can influence a sufficient volume of heart tissue to terminate cardiac fibrillation. Second, it has been uncertain whether cardiac tissue should be viewed as an electrically orthotropic structure, or whether its electrical properties are, in fact, isotropic in the plane orthogonal to myofiber direction. In the present study, a computer model that incorporates a detailed three-dimensional representation of cardiac muscular architecture is used to investigate these issues. We describe a bidomain model of electrical propagation solved in a discontinuous domain that accurately represents the microstructure of a transmural block of rat left ventricle. From analysis of the model results, we conclude that (1) the laminar organization of myocytes determines unique electrical properties in three microstructurally defined directions at any point in the ventricular wall of the heart, and (2) interlaminar clefts between layers of cardiomyocytes provide a substrate for bulk activation of the ventricles during defibrillation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心脏微结构:心脏电传播和除颤的意义
摘要:我们对心脏电生理特性的理解是不完整的。我们研究了促进这种理解的两个基本问题。首先,外界施加的电击如何影响心脏组织的足够体积以终止心脏颤动的机制一直存在广泛的争论。其次,心脏组织是否应该被视为电正交异性结构,或者它的电特性是否实际上在与肌纤维方向正交的平面上是各向同性的,这一直是不确定的。在本研究中,采用了一种包含详细的心肌结构三维表示的计算机模型来研究这些问题。我们描述了一个在不连续域中求解的电传播的双域模型,该模型准确地表示了大鼠左心室跨壁块的微观结构。通过对模型结果的分析,我们得出结论:(1)心肌细胞的层流组织在心脏心室壁任意点的三个微观结构定义方向上决定了独特的电特性;(2)心肌细胞层间的层流间隙为除颤期间心室的大量激活提供了基质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neuron-Derived Orphan Receptor-1 (NOR-1) Modulates Vascular Smooth Muscle Cell Proliferation Functional Compartmentation of Endothelial P2Y Receptor Signaling Cardiac Microstructure: Implications for Electrical Propagation and Defibrillation in the Heart Increased Exchange Current but Normal Ca2+ Transport via Na+-Ca2+ Exchange During Cardiac Hypertrophy After Myocardial Infarction Functionally Novel Tumor Necrosis Factor-&agr;–Modulated CHR-Binding Protein Mediates Cyclin A Transcriptional Repression in Vascular Endothelial Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1