A Few Interactions Improve Distributed Nonparametric Estimation, Optimally

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Information Theory Pub Date : 2023-08-30 DOI:10.1109/TIT.2023.3309920
Jingbo Liu
{"title":"A Few Interactions Improve Distributed Nonparametric Estimation, Optimally","authors":"Jingbo Liu","doi":"10.1109/TIT.2023.3309920","DOIUrl":null,"url":null,"abstract":"Consider the problem of nonparametric estimation of an unknown \n<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>\n-Hölder smooth density \n<inline-formula> <tex-math>$p_{XY}$ </tex-math></inline-formula>\n at a given point, where \n<inline-formula> <tex-math>$X$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$Y$ </tex-math></inline-formula>\n are both \n<inline-formula> <tex-math>$d$ </tex-math></inline-formula>\n dimensional. An infinite sequence of i.i.d. samples \n<inline-formula> <tex-math>$(X_{i},Y_{i})$ </tex-math></inline-formula>\n are generated according to this distribution, and two terminals observe \n<inline-formula> <tex-math>$(X_{i})$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$(Y_{i})$ </tex-math></inline-formula>\n, respectively. They are allowed to exchange \n<inline-formula> <tex-math>$k$ </tex-math></inline-formula>\n bits either in oneway or interactively in order for Bob to estimate the unknown density. We show that the minimax mean square risk is order \n<inline-formula> <tex-math>$\\left ({\\frac {k}{\\log k} }\\right)^{-\\frac {2\\beta }{d+2\\beta }}$ </tex-math></inline-formula>\n for one-way protocols and \n<inline-formula> <tex-math>$k^{-\\frac {2\\beta }{d+2\\beta }}$ </tex-math></inline-formula>\n for interactive protocols. The logarithmic improvement is nonexistent in the parametric counterparts, and therefore can be regarded as a consequence of nonparametric nature of the problem. Moreover, a few rounds of interactions achieve the interactive minimax rate: the number of rounds can grow as slowly as the super-logarithm (i.e., inverse tetration) of \n<inline-formula> <tex-math>$k$ </tex-math></inline-formula>\n. The proof of the upper bound is based on a novel multi-round scheme for estimating the joint distribution of a pair of biased Bernoulli variables, and the lower bound is built on a sharp estimate of a symmetric strong data processing constant for biased Bernoulli variables.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"69 12","pages":"7867-7886"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10234708","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10234708/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

Consider the problem of nonparametric estimation of an unknown $\beta $ -Hölder smooth density $p_{XY}$ at a given point, where $X$ and $Y$ are both $d$ dimensional. An infinite sequence of i.i.d. samples $(X_{i},Y_{i})$ are generated according to this distribution, and two terminals observe $(X_{i})$ and $(Y_{i})$ , respectively. They are allowed to exchange $k$ bits either in oneway or interactively in order for Bob to estimate the unknown density. We show that the minimax mean square risk is order $\left ({\frac {k}{\log k} }\right)^{-\frac {2\beta }{d+2\beta }}$ for one-way protocols and $k^{-\frac {2\beta }{d+2\beta }}$ for interactive protocols. The logarithmic improvement is nonexistent in the parametric counterparts, and therefore can be regarded as a consequence of nonparametric nature of the problem. Moreover, a few rounds of interactions achieve the interactive minimax rate: the number of rounds can grow as slowly as the super-logarithm (i.e., inverse tetration) of $k$ . The proof of the upper bound is based on a novel multi-round scheme for estimating the joint distribution of a pair of biased Bernoulli variables, and the lower bound is built on a sharp estimate of a symmetric strong data processing constant for biased Bernoulli variables.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一些相互作用最优地改进了分布非参数估计
考虑在给定点上未知$\beta$ -Hölder平滑密度$p_{XY}$的非参数估计问题,其中$X$和$Y$都是$d$维。根据这个分布生成一个无限序列的i.i.d样本$(X_i,Y_i)$,两个终端分别观察到$(X_i)$和$(Y_i)$。为了让Bob估算未知密度,它们可以以一种方式或交互方式交换$k$位。我们证明了最小最大均方风险对于单向协议是阶$\left(\frac{k}{\log k} \right)^{-\frac{2\beta}{d+2\beta}}$,对于交互协议是阶$k^{-\frac{2\beta}{d+2\beta}}$。对数改进在参数对应物中不存在,因此可以视为问题的非参数性质的结果。此外,有几轮交互可以达到交互极小极大速率:轮数的增长速度可以与$k$的超对数(即逆四分化)一样慢。上界的证明是基于估计一对有偏伯努利变量联合分布的一种新的多轮格式,下界的证明是建立在对有偏伯努利变量的对称强数据处理常数的锐估计上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
期刊最新文献
Table of Contents IEEE Transactions on Information Theory Publication Information IEEE Transactions on Information Theory Information for Authors Large and Small Deviations for Statistical Sequence Matching Derivatives of Entropy and the MMSE Conjecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1