Fault detection of a non-linear continuous stirred tank heater based on SVM

Xinrui Shen, Tianyu Tan, Jian Hou
{"title":"Fault detection of a non-linear continuous stirred tank heater based on SVM","authors":"Xinrui Shen, Tianyu Tan, Jian Hou","doi":"10.1109/CCDC.2017.7978517","DOIUrl":null,"url":null,"abstract":"Industrial big data has created a challenge for data measurement, detection, and processing. This paper shows that support vector machine (SVM) is extremely useful in detecting fault information in modern complex industrial processes. With a pilot plant of Continuous Stirred Tank Heater (CSTH) process, the SVM method with radial basis function (RBF) kernels is tested on the CSTH database and compared with an improved Partial Least Squares (IPLS) and Principal Component Analysis (PCA). The performance of SVM is validated using k-fold cross-validation where the classifier based on SVM outperforms those based on PCA and IPLS. These comparisons show that SVM has remarkable detection performance and satisfying elapsed time. From an industrial point of view, the vitality of SVM algorithm in actual industrial process is discussed.","PeriodicalId":6588,"journal":{"name":"2017 29th Chinese Control And Decision Conference (CCDC)","volume":"51 1","pages":"7372-7377"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2017.7978517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Industrial big data has created a challenge for data measurement, detection, and processing. This paper shows that support vector machine (SVM) is extremely useful in detecting fault information in modern complex industrial processes. With a pilot plant of Continuous Stirred Tank Heater (CSTH) process, the SVM method with radial basis function (RBF) kernels is tested on the CSTH database and compared with an improved Partial Least Squares (IPLS) and Principal Component Analysis (PCA). The performance of SVM is validated using k-fold cross-validation where the classifier based on SVM outperforms those based on PCA and IPLS. These comparisons show that SVM has remarkable detection performance and satisfying elapsed time. From an industrial point of view, the vitality of SVM algorithm in actual industrial process is discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的非线性连续搅拌槽加热器故障检测
工业大数据给数据测量、检测和处理带来了挑战。本文表明,支持向量机在现代复杂工业过程的故障信息检测中具有重要的应用价值。以连续搅拌罐加热器(CSTH)工艺为例,在CSTH数据库上对径向基函数(RBF)核支持向量机方法进行了测试,并与改进的偏最小二乘(IPLS)和主成分分析(PCA)方法进行了比较。使用k-fold交叉验证验证了SVM的性能,其中基于SVM的分类器优于基于PCA和IPLS的分类器。这些比较表明,支持向量机具有显著的检测性能和令人满意的运行时间。从工业的角度讨论了支持向量机算法在实际工业过程中的生命力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UPQC Harmonic Detection Algorithm Based on Improved p-q Theory and Design of Low-Pass Filter Online parameters updating method for least squares support vector machine using Unscented Kalman filter Quadratic stabilization and L2 gain analysis of switched affine systems 3PL inventory pledge decision analysis under the unified credit logistics model Design and implementation of LiDAR navigation system based on triangulation measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1