Cilia and electroosmosis induced double diffusive transport of hybrid nanofluids through microchannel and entropy analysis

IF 2.4 Q2 ENGINEERING, MECHANICAL Nonlinear Engineering - Modeling and Application Pub Date : 2023-01-01 DOI:10.1515/nleng-2022-0287
S. Munawar, N. Saleem, D. Tripathi
{"title":"Cilia and electroosmosis induced double diffusive transport of hybrid nanofluids through microchannel and entropy analysis","authors":"S. Munawar, N. Saleem, D. Tripathi","doi":"10.1515/nleng-2022-0287","DOIUrl":null,"url":null,"abstract":"Abstract A mathematical model is presented to analyze the double diffusive transport of hybrid nanofluids in microchannel. The hybrid nanofluids flow is driven by the cilia beating and electroosmosis in the presence of radiation effects and activation energy. Cu–CuO/blood hybrid nanofluids are considered for this analysis. Phase difference in the beatings of mimetic cilia arrays emerge symmetry breaking pump walls to control the fluid stream. Analytical solutions for the governing equations are derived under the assumptions of Debye–Hückel linearization, lubrication, and Rosseland approximation. Dimensional analysis has also been considered for applying the suitable approximations. Entropy analysis is also performed to examine the heat transfer irreversibility and Bejan number. Moreover, trapping phenomena are discussed based on the contour plots of the stream function. From the results, it is noted that an escalation in fluid velocity occurs with the rise in slippage effects near the wall surface. Entropy inside the pump can be eased with the provision of activation energy input or by the consideration of the radiated fluid in the presence of electroosmosis. The results of the present study can be applicable to develop the emerging thermofluidic systems which can further be utilized for the heat and mass transfer at micro level.","PeriodicalId":37863,"journal":{"name":"Nonlinear Engineering - Modeling and Application","volume":"51 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Engineering - Modeling and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nleng-2022-0287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract A mathematical model is presented to analyze the double diffusive transport of hybrid nanofluids in microchannel. The hybrid nanofluids flow is driven by the cilia beating and electroosmosis in the presence of radiation effects and activation energy. Cu–CuO/blood hybrid nanofluids are considered for this analysis. Phase difference in the beatings of mimetic cilia arrays emerge symmetry breaking pump walls to control the fluid stream. Analytical solutions for the governing equations are derived under the assumptions of Debye–Hückel linearization, lubrication, and Rosseland approximation. Dimensional analysis has also been considered for applying the suitable approximations. Entropy analysis is also performed to examine the heat transfer irreversibility and Bejan number. Moreover, trapping phenomena are discussed based on the contour plots of the stream function. From the results, it is noted that an escalation in fluid velocity occurs with the rise in slippage effects near the wall surface. Entropy inside the pump can be eased with the provision of activation energy input or by the consideration of the radiated fluid in the presence of electroosmosis. The results of the present study can be applicable to develop the emerging thermofluidic systems which can further be utilized for the heat and mass transfer at micro level.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纤毛和电渗透诱导混合纳米流体通过微通道的双重扩散传输和熵分析
摘要建立了混合纳米流体在微通道内双扩散输运的数学模型。在辐射效应和活化能存在的情况下,混合纳米流体的流动由纤毛跳动和电渗透驱动。Cu-CuO /血液混合纳米流体被考虑用于该分析。模拟纤毛阵列跳动时的相位差出现对称破壁,从而控制流体流动。在debye - h ckel线性化、润滑和Rosseland近似的假设下,导出了控制方程的解析解。为了应用合适的近似,还考虑了量纲分析。采用熵分析方法考察了传热的不可逆性和贝让数。此外,根据流函数等高线图讨论了捕获现象。从结果中可以看出,随着壁面附近滑移效应的增加,流体速度也会增加。泵内的熵可以通过提供活化能输入或考虑电渗透存在下的辐射流体来缓解。本研究结果可应用于新兴的热流体系统的开发,并可进一步用于微观传热传质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
3.60%
发文量
49
审稿时长
44 weeks
期刊介绍: The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.
期刊最新文献
Study of time-fractional delayed differential equations via new integral transform-based variation iteration technique Convolutional neural network for UAV image processing and navigation in tree plantations based on deep learning Nonlinear adaptive sliding mode control with application to quadcopters Equilibrium stability of dynamic duopoly Cournot game under heterogeneous strategies, asymmetric information, and one-way R&D spillovers A versatile dynamic noise control framework based on computer simulation and modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1