Unified cellular neural network cell dynamical equation using delta operator

H. C. Reddy, G. Moschytz
{"title":"Unified cellular neural network cell dynamical equation using delta operator","authors":"H. C. Reddy, G. Moschytz","doi":"10.1109/ISCAS.1997.608822","DOIUrl":null,"url":null,"abstract":"The signal processing algorithms based on conventional shift operator tend to be ill-conditioned in situations involving fast sampling and shorter wordlength. To alleviate this problem delta operator based analysis and design has been proposed for high speed digital signal processing and control systems. The advantage for delta (/spl delta/) operator seems to come from the fact as sampling period T/sub s//spl rarr/0, the discrete time system process resembles that of continuous time system. In this paper we develop a unified cellular neural network (CNN) cell model using the delta operator approach. The model gives a general discrete-time (DT) CNN cell dynamics in which the sampling period T/sub s/ is an explicit parameter. As T/sub s//spl rarr/0, we get the continuous time (CT)-CNN equation. Several results connected with the stability and robustness of CT-CNN and DT-CNN can be linked using this approach. This approach highlights the similarities, rather than the differences between discrete and continuous CNNs, thus allowing continuous insights to be applied to the discrete CNN case. Further, more importantly from the implementation point of view, delta operator based DT-CNN cell design can be obtained using /spl delta//sup -1/ as an integrator {instead of a delay (z/sup -1/)}. The /spl delta//sup -1/ integrator can be realized using switched current/switched capacitor circuits. The dynamic circuit element in the DT-CNN is thus \"/spl delta//sup -1/\".","PeriodicalId":68559,"journal":{"name":"电路与系统学报","volume":"77 1","pages":"577-580 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"电路与系统学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ISCAS.1997.608822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The signal processing algorithms based on conventional shift operator tend to be ill-conditioned in situations involving fast sampling and shorter wordlength. To alleviate this problem delta operator based analysis and design has been proposed for high speed digital signal processing and control systems. The advantage for delta (/spl delta/) operator seems to come from the fact as sampling period T/sub s//spl rarr/0, the discrete time system process resembles that of continuous time system. In this paper we develop a unified cellular neural network (CNN) cell model using the delta operator approach. The model gives a general discrete-time (DT) CNN cell dynamics in which the sampling period T/sub s/ is an explicit parameter. As T/sub s//spl rarr/0, we get the continuous time (CT)-CNN equation. Several results connected with the stability and robustness of CT-CNN and DT-CNN can be linked using this approach. This approach highlights the similarities, rather than the differences between discrete and continuous CNNs, thus allowing continuous insights to be applied to the discrete CNN case. Further, more importantly from the implementation point of view, delta operator based DT-CNN cell design can be obtained using /spl delta//sup -1/ as an integrator {instead of a delay (z/sup -1/)}. The /spl delta//sup -1/ integrator can be realized using switched current/switched capacitor circuits. The dynamic circuit element in the DT-CNN is thus "/spl delta//sup -1/".
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用delta算子的统一细胞神经网络细胞动力学方程
传统的基于移位算子的信号处理算法在快速采样和较短字长的情况下容易出现病态。为了解决这一问题,提出了基于增量算子的高速数字信号处理与控制系统的分析与设计。delta (/spl delta/)算子的优点似乎来自于采样周期T/sub /s //spl rarr/0时,离散时间系统过程类似于连续时间系统过程。在本文中,我们开发了一个统一的细胞神经网络(CNN)细胞模型使用delta算子的方法。该模型给出了一个广义的离散时间(DT) CNN单元动力学,其中采样周期T/sub /是一个显式参数。当T/s //spl rrr /0时,得到连续时间(CT)-CNN方程。与CT-CNN和DT-CNN的稳定性和鲁棒性相关的几个结果可以使用这种方法联系起来。这种方法强调了离散CNN和连续CNN之间的相似之处,而不是差异,从而允许将连续的见解应用于离散CNN案例。此外,从实现的角度来看,更重要的是,基于delta算子的DT-CNN单元设计可以使用/spl delta//sup -1/作为积分器{而不是延迟(z/sup -1/)}来获得。/spl delta//sup -1/积分器可以通过开关电流/开关电容电路实现。因此,DT-CNN中的动态电路元件是“/spl delta//sup -1/”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
2463
期刊最新文献
Hysteresis quantizer Design of wide-tunable translinear second-order oscillators Design of a direct digital synthesizer with an on-chip D/A-converter Steady state analysis of SMPS Low power wireless communication and signal processing circuits for distributed microsensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1