A spline-based time-varying reproduction number for modelling epidemiological outbreaks

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Journal of the Royal Statistical Society Series C-Applied Statistics Pub Date : 2023-04-05 DOI:10.1093/jrsssc/qlad027
Eugen Pircalabelu
{"title":"A spline-based time-varying reproduction number for modelling epidemiological outbreaks","authors":"Eugen Pircalabelu","doi":"10.1093/jrsssc/qlad027","DOIUrl":null,"url":null,"abstract":"\n We develop in this manuscript a method for performing estimation and inference for the reproduction number of an epidemiological outbreak, focusing on the COVID-19 epidemic. The estimator is time-dependent and uses spline modelling to adapt to changes in the outbreak. This is accomplished by directly modelling the series of new infections as a function of time and subsequently using the derivative of the function to define a time-varying reproduction number, which is then used to assess the evolution of the epidemic for several countries.","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"26 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlad027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

We develop in this manuscript a method for performing estimation and inference for the reproduction number of an epidemiological outbreak, focusing on the COVID-19 epidemic. The estimator is time-dependent and uses spline modelling to adapt to changes in the outbreak. This is accomplished by directly modelling the series of new infections as a function of time and subsequently using the derivative of the function to define a time-varying reproduction number, which is then used to assess the evolution of the epidemic for several countries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于样条的时变繁殖数,用于模拟流行病学暴发
我们在本文中开发了一种对流行病学暴发再现数进行估计和推断的方法,重点是COVID-19流行病。估计器是时变的,并使用样条建模来适应爆发的变化。这是通过直接将一系列新感染作为时间函数进行建模,然后使用该函数的导数来确定随时间变化的繁殖数,然后用于评估若干国家流行病的演变情况来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies). A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.
期刊最新文献
tdCoxSNN: Time-dependent Cox survival neural network for continuous-time dynamic prediction. Measuring the impact of new risk factors within survival models. Non-parametric Bayesian approach to multiple treatment comparisons in network meta-analysis with application to comparisons of anti-depressants. Joint modelling of survival and backwards recurrence outcomes: an analysis of factors associated with fertility treatment in the U.S. Walking fingerprinting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1