{"title":"Prevent Fouling and Corrosion During Mill-Out Operations: Case Studies","authors":"Tanhee Galindo","doi":"10.2118/195205-MS","DOIUrl":null,"url":null,"abstract":"\n Case studies of mill-out operations in the Permian Basin which evaluate chemical programs and processes used. Results show how existing processes and chemicals used or lack thereof, can affect equipment and undo the preventative chemical treatments used during the hydraulic fracturing process.\n The study looks at field water testing performed during various mill-out operations and considered workover rig vs coiled tubing, equipment set up, water & chemicals used, and operational challenges. Water analyses were completed on the injection water and returns at various intervals of the mill-out. Effectiveness of chemical treatment was also monitored when biocide was used.\n Field case studies of horizontal wells for two operators in the Permian Basin are presented. Wells were milled-out utilizing workover rigs or coiled tubing units. Testing results show the impact of equipment setup and operations process on the water quality and efficiency of the chemicals used. Water fouling was prevalent in all cases, with coiled tubing jobs showing the highest degree of water contamination and chemical inefficiency. Changes in the water treatment program during operations showed significant improvement and sustainable results. Potential corrosion of the work string due to water fouling and water composition were also observed. The effects of changes to chemical dosages were also monitored. This was important because it identified operational improvements that can reduce equipment replacement costs, reduce chemical overuse and help protect wells from fouling due to high bacteria.\n These case study provides a comprehensive review of mill-out operations, which provides guidelines for improving chemical efficiency and potential of extending life of the work string.","PeriodicalId":11150,"journal":{"name":"Day 2 Wed, April 10, 2019","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, April 10, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/195205-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Case studies of mill-out operations in the Permian Basin which evaluate chemical programs and processes used. Results show how existing processes and chemicals used or lack thereof, can affect equipment and undo the preventative chemical treatments used during the hydraulic fracturing process.
The study looks at field water testing performed during various mill-out operations and considered workover rig vs coiled tubing, equipment set up, water & chemicals used, and operational challenges. Water analyses were completed on the injection water and returns at various intervals of the mill-out. Effectiveness of chemical treatment was also monitored when biocide was used.
Field case studies of horizontal wells for two operators in the Permian Basin are presented. Wells were milled-out utilizing workover rigs or coiled tubing units. Testing results show the impact of equipment setup and operations process on the water quality and efficiency of the chemicals used. Water fouling was prevalent in all cases, with coiled tubing jobs showing the highest degree of water contamination and chemical inefficiency. Changes in the water treatment program during operations showed significant improvement and sustainable results. Potential corrosion of the work string due to water fouling and water composition were also observed. The effects of changes to chemical dosages were also monitored. This was important because it identified operational improvements that can reduce equipment replacement costs, reduce chemical overuse and help protect wells from fouling due to high bacteria.
These case study provides a comprehensive review of mill-out operations, which provides guidelines for improving chemical efficiency and potential of extending life of the work string.