Quasisimple Wave Solutions of Euler's System of Equations for Ideal Gas

{"title":"Quasisimple Wave Solutions of Euler's System of Equations for Ideal Gas","authors":"B. S. Desale, N. B. Potadar","doi":"10.1155/2022/5931413","DOIUrl":null,"url":null,"abstract":"Quasisimple wave solutions of Euler’s system of equations for ideal gas are investigated under the assumption of spherical and cylindrical symmetries. These solutions are proved to be stabilized into sound wave solutions and cavitation. It is proved that if initial conditions from outside the invariant region approach to transitional solution, then reciprocal of the self-similar parameter goes to infinity. However, when initial conditions stabilize into sound waves or cavitation, then reciprocal of self-similar parameter approaches finite value. Further, it is proved that initial conditions can be parametrized so that some of the initial conditions stabilize into sound wave solutions. The rest of the initial conditions are proved to be stabilized into cavitation. This extends the work of G. I. Taylor to the case of cavitation. It is proved that quasisimple wave solutions exist for the balance laws comprised of Euler’s system of equations in the case of cylindrically and spherically symmetric cases. The description applies to the motion of cylindrical and spherical piston in real life. In particular, self-similar description of appearance of vacuum in the motion of cylindrical and spherical piston is given.","PeriodicalId":14766,"journal":{"name":"J. Appl. Math.","volume":"69 1","pages":"5931413:1-5931413:8"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/5931413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quasisimple wave solutions of Euler’s system of equations for ideal gas are investigated under the assumption of spherical and cylindrical symmetries. These solutions are proved to be stabilized into sound wave solutions and cavitation. It is proved that if initial conditions from outside the invariant region approach to transitional solution, then reciprocal of the self-similar parameter goes to infinity. However, when initial conditions stabilize into sound waves or cavitation, then reciprocal of self-similar parameter approaches finite value. Further, it is proved that initial conditions can be parametrized so that some of the initial conditions stabilize into sound wave solutions. The rest of the initial conditions are proved to be stabilized into cavitation. This extends the work of G. I. Taylor to the case of cavitation. It is proved that quasisimple wave solutions exist for the balance laws comprised of Euler’s system of equations in the case of cylindrically and spherically symmetric cases. The description applies to the motion of cylindrical and spherical piston in real life. In particular, self-similar description of appearance of vacuum in the motion of cylindrical and spherical piston is given.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
理想气体欧拉方程组的准简单波动解
研究了理想气体欧拉方程组在球对称和柱对称假设下的准简单波解。这些溶液被证明稳定为声波溶液和空化溶液。证明了如果初始条件从不变域外逼近过渡解,则自相似参数的倒数趋于无穷。然而,当初始条件稳定为声波或空化时,自相似参数的倒数接近有限值。进一步证明了初始条件可以参数化,使得一些初始条件稳定为声波解。其余的初始条件被证明是稳定到空化的。这将G. I. Taylor的工作扩展到空化的情况。证明了由欧拉方程组组成的平衡律在圆柱对称和球对称情况下存在准简单波动解。这种描述适用于实际生活中圆柱活塞和球面活塞的运动。特别地,给出了圆柱活塞和球面活塞运动中真空现象的自相似描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Malaria Control Strategy: Optimal Control and Cost-Effectiveness Analysis on the Impact of Vector Bias on the Efficacy of Mosquito Repellent and Hospitalization Analytical Approximate Solutions of Caputo Fractional KdV-Burgers Equations Using Laplace Residual Power Series Technique An Efficient New Technique for Solving Nonlinear Problems Involving the Conformable Fractional Derivatives Application of Improved WOA in Hammerstein Parameter Resolution Problems under Advanced Mathematical Theory Intelligent Optimization Model of Enterprise Financial Account Receivable Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1