Real-time detection of EEG spikes using neural networks

Ozcan Ozdaa, Guanglong Zhu, I. Yaylali, P. Jayakar
{"title":"Real-time detection of EEG spikes using neural networks","authors":"Ozcan Ozdaa, Guanglong Zhu, I. Yaylali, P. Jayakar","doi":"10.1109/IEMBS.1992.5761232","DOIUrl":null,"url":null,"abstract":"A digital signal processor based microcomputer system is designed for real-time detection of EEG spikes. The system acquires 16 channel EEGs, displays them in 5 second epochs, detects EEG spikes, identifres them on the screen and stores their times of occurrence au in real-time. Spike detection is achieved by a two-level neural network system analyzing 100 msec of multichannel EEG in a sliding window. 1 n the first level, spikes are Ukntified in individual EEG channels by 16 identical neural network modules computed in the digital signal processor. In the second level, outputs of the first level modules are integrated by a second neural network module for thefinal detection. Results show that neural network based EEG spike detection systems can be implemented for real-time clinical operation using current digital signal processor technology.","PeriodicalId":6457,"journal":{"name":"1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","volume":"4 1","pages":"1022-1023"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1992.5761232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

A digital signal processor based microcomputer system is designed for real-time detection of EEG spikes. The system acquires 16 channel EEGs, displays them in 5 second epochs, detects EEG spikes, identifres them on the screen and stores their times of occurrence au in real-time. Spike detection is achieved by a two-level neural network system analyzing 100 msec of multichannel EEG in a sliding window. 1 n the first level, spikes are Ukntified in individual EEG channels by 16 identical neural network modules computed in the digital signal processor. In the second level, outputs of the first level modules are integrated by a second neural network module for thefinal detection. Results show that neural network based EEG spike detection systems can be implemented for real-time clinical operation using current digital signal processor technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经网络实时检测脑电图峰值
设计了一种基于数字信号处理器的脑电图峰值实时检测系统。该系统采集16路脑电图,以5秒为周期显示,检测脑电图峰值,在屏幕上进行识别,并实时存储其发生时间。采用两级神经网络系统对滑动窗口内100毫秒的多通道脑电图进行分析,实现了脉冲检测。在第一级,在数字信号处理器中计算16个相同的神经网络模块来识别各个EEG通道中的尖峰。在第二级,第一级模块的输出由第二个神经网络模块集成,用于最终检测。结果表明,利用现有的数字信号处理器技术,可以实现基于神经网络的脑电图峰检测系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Welcome Message from the Organizing Committee A model of injury potential for myelinated nerve fiber Plenary keynote lecture President's welcome message Images of Electrocardiographic Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1