Efficient Data Model Verification with Many-Sorted Logic (T)

Ivan Bocic, T. Bultan
{"title":"Efficient Data Model Verification with Many-Sorted Logic (T)","authors":"Ivan Bocic, T. Bultan","doi":"10.1109/ASE.2015.48","DOIUrl":null,"url":null,"abstract":"Misuse or loss of web application data can have catastrophic consequences in today's Internet oriented world. Hence, verification of web application data models is of paramount importance. We have developed a framework for verification of web application data models via translation to First Order Logic (FOL), followed by automated theorem proving. Due to the undecidability of FOL, this automated approach does not always produce a conclusive answer. In this paper, we investigate the use of many-sorted logic in data model verification in order to improve the effectiveness of this approach. Many-sorted logic allows us to specify type information explicitly, thus lightening the burden of reasoning about type information during theorem proving. Our experiments demonstrate that using many-sorted logic improves the verification performance significantly, and completely eliminates inconclusive results in all cases over 7 real world web applications, down from an 17% inconclusive rate.","PeriodicalId":6586,"journal":{"name":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"6 1","pages":"42-52"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2015.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Misuse or loss of web application data can have catastrophic consequences in today's Internet oriented world. Hence, verification of web application data models is of paramount importance. We have developed a framework for verification of web application data models via translation to First Order Logic (FOL), followed by automated theorem proving. Due to the undecidability of FOL, this automated approach does not always produce a conclusive answer. In this paper, we investigate the use of many-sorted logic in data model verification in order to improve the effectiveness of this approach. Many-sorted logic allows us to specify type information explicitly, thus lightening the burden of reasoning about type information during theorem proving. Our experiments demonstrate that using many-sorted logic improves the verification performance significantly, and completely eliminates inconclusive results in all cases over 7 real world web applications, down from an 17% inconclusive rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多排序逻辑的高效数据模型验证
在当今面向Internet的世界中,滥用或丢失web应用程序数据可能会造成灾难性的后果。因此,验证web应用程序数据模型是至关重要的。我们开发了一个框架,通过转换到一阶逻辑(FOL)来验证web应用程序数据模型,然后进行自动定理证明。由于FOL的不可判定性,这种自动化方法并不总是产生结论性的答案。在本文中,我们研究了多排序逻辑在数据模型验证中的使用,以提高该方法的有效性。多排序逻辑允许我们显式地指定类型信息,从而减轻了定理证明过程中关于类型信息的推理负担。我们的实验表明,使用多排序逻辑显著提高了验证性能,并且在超过7个真实web应用程序的所有情况下完全消除了不确定的结果,低于17%的不确定率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cost-Efficient Sampling for Performance Prediction of Configurable Systems (T) Refactorings for Android Asynchronous Programming Study and Refactoring of Android Asynchronous Programming (T) The iMPAcT Tool: Testing UI Patterns on Mobile Applications Combining Deep Learning with Information Retrieval to Localize Buggy Files for Bug Reports (N)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1