Genetic Algorithm and Particle Swarm Optimization Techniques for Solving Multi-Objectives on Single Machine Scheduling Problem

Alaa Sabah Hameed, H. Chachan
{"title":"Genetic Algorithm and Particle Swarm Optimization Techniques for Solving Multi-Objectives on Single Machine Scheduling Problem","authors":"Alaa Sabah Hameed, H. Chachan","doi":"10.30526/33.1.2378","DOIUrl":null,"url":null,"abstract":"In this paper, two of the local search algorithms are used (genetic algorithm and particle swarm optimization), in scheduling number of products (n jobs) on a single machine to minimize a multi-objective function which is denoted as  (total completion time, total tardiness, total earliness and the total late work). A branch and bound (BAB) method is used for comparing the results for (n) jobs starting from (5-18). The results show that the two algorithms have found the optimal and near optimal solutions in an appropriate times.","PeriodicalId":13236,"journal":{"name":"Ibn Al-Haitham Journal For Pure And Applied Science","volume":"106 1","pages":"119-128"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibn Al-Haitham Journal For Pure And Applied Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30526/33.1.2378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, two of the local search algorithms are used (genetic algorithm and particle swarm optimization), in scheduling number of products (n jobs) on a single machine to minimize a multi-objective function which is denoted as  (total completion time, total tardiness, total earliness and the total late work). A branch and bound (BAB) method is used for comparing the results for (n) jobs starting from (5-18). The results show that the two algorithms have found the optimal and near optimal solutions in an appropriate times.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求解单机多目标调度问题的遗传算法和粒子群优化技术
本文采用遗传算法和粒子群算法两种局部搜索算法,对单个机器上的产品(n个作业)进行调度,以最小化一个多目标函数,该函数表示为(总完工时间、总迟到时间、总提前时间和总迟到时间)。分支定界(BAB)方法用于比较从(5-18)开始的(n)个作业的结果。结果表明,两种算法都能在适当的时间内找到最优解和近最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extend Nearly Pseudo Quasi-2-Absorbing submodules(I) Protective effect of (Andrographis Paniculata) on 4-Vinylcyclohexene Diepoxide Induced ovarian Toxicity in Female Albino Rats Genetic Algorithm and Particle Swarm Optimization Techniques for Solving Multi-Objectives on Single Machine Scheduling Problem Study of Nuclear Properties of High Purity Germanium Assessment of the Quality of Drinking Water for Plants in the Al-Karkh, Baghdad, Iraq
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1