Patched Multi-Key Partitioning for Robust Query Performance

Steffen Kläbe, K. Sattler
{"title":"Patched Multi-Key Partitioning for Robust Query Performance","authors":"Steffen Kläbe, K. Sattler","doi":"10.48786/edbt.2023.26","DOIUrl":null,"url":null,"abstract":"Data partitioning is the key for parallel query processing in modern analytical database systems. Choosing the right partitioning key for a given dataset is a difficult task and crucial for query performance. Real world data warehouses contain a large amount of tables connected in complex schemes resulting in an over-whelming amount of partition key candidates. In this paper, we present the approach of patched multi-key partitioning, allowing to define multiple partition keys simultaneously without data replication. The key idea is to map the relational table partitioning problem to a graph partition problem in order to use existing graph partitioning algorithms to find connectivity components in the data and maintain exceptions (patches) to the partitioning separately. We show that patched multi-key partitioning offer opportunities for achieving robust query performance, i.e. reaching reasonably good performance for many queries instead of optimal performance for only a few queries.","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"9 1","pages":"324-336"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2023.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data partitioning is the key for parallel query processing in modern analytical database systems. Choosing the right partitioning key for a given dataset is a difficult task and crucial for query performance. Real world data warehouses contain a large amount of tables connected in complex schemes resulting in an over-whelming amount of partition key candidates. In this paper, we present the approach of patched multi-key partitioning, allowing to define multiple partition keys simultaneously without data replication. The key idea is to map the relational table partitioning problem to a graph partition problem in order to use existing graph partitioning algorithms to find connectivity components in the data and maintain exceptions (patches) to the partitioning separately. We show that patched multi-key partitioning offer opportunities for achieving robust query performance, i.e. reaching reasonably good performance for many queries instead of optimal performance for only a few queries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
补丁多键分区鲁棒查询性能
在现代分析数据库系统中,数据分区是并行查询处理的关键。为给定的数据集选择正确的分区键是一项困难的任务,对查询性能至关重要。现实世界的数据仓库包含大量以复杂模式连接的表,从而导致大量的分区键候选。在本文中,我们提出了修补多键分区的方法,允许同时定义多个分区键,而不需要数据复制。其关键思想是将关系表分区问题映射为图分区问题,以便使用现有的图分区算法在数据中查找连接性组件并分别维护分区的异常(补丁)。我们表明,修补的多键分区为实现健壮的查询性能提供了机会,即为许多查询达到相当好的性能,而不是仅为少数查询达到最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computing Generic Abstractions from Application Datasets Fair Spatial Indexing: A paradigm for Group Spatial Fairness. Data Coverage for Detecting Representation Bias in Image Datasets: A Crowdsourcing Approach Auditing for Spatial Fairness TransEdge: Supporting Efficient Read Queries Across Untrusted Edge Nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1