{"title":"Thermal performance of nanofluids in a sinusoidal channel with embedded porous region","authors":"Asif Ali, S. Shuja, BS Yilbas","doi":"10.1177/09576509231188555","DOIUrl":null,"url":null,"abstract":"Inclusion of porous structures in micro-channels enhances heat transfer rates in energy harvesting devices, which signifies as the working fluid becomes a nanofluid. The present study compares the thermal performance of CuO-water, TiO2-water and graphene-water nanofluids in a sinusoidal channel with a porous insert. The flow and heat transfer characteristics are simulated and the effects of volumetric fraction of nanofluids, Reynolds number ( Re), porous insert width, and its permeability on the flow and temperature fields are examined. The findings reveal that CuO-water nanofluid results in higher heat transfer rates than those of other nanofluids considered. Graphene-water nanofluid gives rise to lower performance than that of CuO-water nanofluid in terms of convection heat transfer despite the fact that graphene has higher thermal conductivity than CuO. In this case, a decrease in Nusselt number of as much as 6.34% is observed for CuO-water nanofluid among all the cases considered for the Reynolds number of 100. Increasing the permeability of the porous insert slightly enhances (∼0.24%) the average Nusselt number. The porous insert with a small width in the channel improves the heat transfer rates (2.25% increase in Nusselt number), i.e. the average Nusselt number reduces as the porous insert width increases.","PeriodicalId":20705,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","volume":"9 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09576509231188555","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Inclusion of porous structures in micro-channels enhances heat transfer rates in energy harvesting devices, which signifies as the working fluid becomes a nanofluid. The present study compares the thermal performance of CuO-water, TiO2-water and graphene-water nanofluids in a sinusoidal channel with a porous insert. The flow and heat transfer characteristics are simulated and the effects of volumetric fraction of nanofluids, Reynolds number ( Re), porous insert width, and its permeability on the flow and temperature fields are examined. The findings reveal that CuO-water nanofluid results in higher heat transfer rates than those of other nanofluids considered. Graphene-water nanofluid gives rise to lower performance than that of CuO-water nanofluid in terms of convection heat transfer despite the fact that graphene has higher thermal conductivity than CuO. In this case, a decrease in Nusselt number of as much as 6.34% is observed for CuO-water nanofluid among all the cases considered for the Reynolds number of 100. Increasing the permeability of the porous insert slightly enhances (∼0.24%) the average Nusselt number. The porous insert with a small width in the channel improves the heat transfer rates (2.25% increase in Nusselt number), i.e. the average Nusselt number reduces as the porous insert width increases.
期刊介绍:
The Journal of Power and Energy, Part A of the Proceedings of the Institution of Mechanical Engineers, is dedicated to publishing peer-reviewed papers of high scientific quality on all aspects of the technology of energy conversion systems.