W. Balasooriya, Clara Clute, B. Schrittesser, G. Pinter
{"title":"A Review on Applicability, Limitations, and Improvements of Polymeric Materials in High-Pressure Hydrogen Gas Atmospheres","authors":"W. Balasooriya, Clara Clute, B. Schrittesser, G. Pinter","doi":"10.1080/15583724.2021.1897997","DOIUrl":null,"url":null,"abstract":"Abstract Typically, polymeric materials experience material degradation and damage over time in harsh environments. Improved understanding of the physical and chemical processes associated with possible damage modes intended in high-pressure hydrogen gas exposed atmospheres will help to select and develop materials well suited for applications fulfilling future energy demands in hydrogen as an energy carrier. In high-pressure hydrogen gas exposure conditions, damage from rapid gas decompression (RGD) and from aging in elastomeric as well as thermoplastic material components is unavoidable. This review discusses the applications of polymeric materials in a multi-material approach in the realization of the “Hydrogen economy”. It covers the limitations of existing polymeric components, the current knowledge on polymeric material testing and characterization, and the latest developments. Some improvements are suggested in terms of material development and testing procedures to fill in the gaps in existing knowledge in the literature.","PeriodicalId":20326,"journal":{"name":"Polymer Reviews","volume":"10 1","pages":"175 - 209"},"PeriodicalIF":11.1000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15583724.2021.1897997","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 30
Abstract
Abstract Typically, polymeric materials experience material degradation and damage over time in harsh environments. Improved understanding of the physical and chemical processes associated with possible damage modes intended in high-pressure hydrogen gas exposed atmospheres will help to select and develop materials well suited for applications fulfilling future energy demands in hydrogen as an energy carrier. In high-pressure hydrogen gas exposure conditions, damage from rapid gas decompression (RGD) and from aging in elastomeric as well as thermoplastic material components is unavoidable. This review discusses the applications of polymeric materials in a multi-material approach in the realization of the “Hydrogen economy”. It covers the limitations of existing polymeric components, the current knowledge on polymeric material testing and characterization, and the latest developments. Some improvements are suggested in terms of material development and testing procedures to fill in the gaps in existing knowledge in the literature.
期刊介绍:
Polymer Reviews is a reputable publication that focuses on timely issues within the field of macromolecular science and engineering. The journal features high-quality reviews that have been specifically curated by experts in the field. Topics of particular importance include biomedical applications, organic electronics and photonics, nanostructures, micro- and nano-fabrication, biological molecules (such as DNA, proteins, and carbohydrates), polymers for renewable energy and environmental applications, and interdisciplinary intersections involving polymers.
The articles in Polymer Reviews fall into two main categories. Some articles offer comprehensive and expansive overviews of a particular subject, while others zero in on the author's own research and situate it within the broader scientific landscape. In both types of articles, the aim is to provide readers with valuable insights and advancements in the field of macromolecular science and engineering.