Low-complexity proportionate algorithms with sparsity-promoting penalties

T. Ferreira, Markus V. S. Lima, P. Diniz, W. Martins
{"title":"Low-complexity proportionate algorithms with sparsity-promoting penalties","authors":"T. Ferreira, Markus V. S. Lima, P. Diniz, W. Martins","doi":"10.1109/ISCAS.2016.7527218","DOIUrl":null,"url":null,"abstract":"There are two main families of algorithms that tackle the problem of sparse system identification: the proportionate family and the one that employs sparsity-promoting penalty functions. Recently, a new approach was proposed with the l0-IPAPA algorithm, which combines proportionate updates with sparsity-promoting penalties. This paper proposes some modifications to the l0-IPAPA algorithm in order to decrease its computational complexity while preserving its good convergence properties. Among these modifications, the inclusion of a data-selection mechanism provides promising results. Some enlightening simulation results are provided in order to verify and compare the performance of the proposed algorithms.","PeriodicalId":6546,"journal":{"name":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"14 1","pages":"253-256"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2016.7527218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

There are two main families of algorithms that tackle the problem of sparse system identification: the proportionate family and the one that employs sparsity-promoting penalty functions. Recently, a new approach was proposed with the l0-IPAPA algorithm, which combines proportionate updates with sparsity-promoting penalties. This paper proposes some modifications to the l0-IPAPA algorithm in order to decrease its computational complexity while preserving its good convergence properties. Among these modifications, the inclusion of a data-selection mechanism provides promising results. Some enlightening simulation results are provided in order to verify and compare the performance of the proposed algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有稀疏性提升惩罚的低复杂度比例算法
解决稀疏系统识别问题的算法主要有两大类:比例算法和采用稀疏性促进惩罚函数的算法。最近,提出了一种新的方法- 10 - ipapa算法,该算法将比例更新与稀疏性促进惩罚相结合。本文对10 - ipapa算法进行了一些改进,以降低其计算复杂度,同时保持其良好的收敛性。在这些修改中,包含数据选择机制提供了有希望的结果。为了验证和比较所提出算法的性能,给出了一些具有启发性的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Live demonstration: An automatic evaluation platform for physical unclonable function test Low-cost configurable ring oscillator PUF with improved uniqueness A passivity based stability measure for discrete 3-D IIR system realizations An effective generator-allocating method to enhance the robustness of power grid Global resource capacity algorithm with path splitting for virtual network embedding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1