Hole transport layers in organic solar cells: A review

IF 0.7 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of metals, materials and minerals Pub Date : 2022-12-26 DOI:10.55713/jmmm.v32i4.1549
Riva Alkarsifi, J. Ackermann, O. Margeat
{"title":"Hole transport layers in organic solar cells: A review","authors":"Riva Alkarsifi, J. Ackermann, O. Margeat","doi":"10.55713/jmmm.v32i4.1549","DOIUrl":null,"url":null,"abstract":"Thanks to huge research efforts, organic solar cells have become serious candidates in the field of renewable energy sources, with reported power conversion efficiencies above 19% and operating lifetime surpassing decades. In the thin film stack composing the organic solar cell, the transport layers at interfaces play a key role, as important as the photoactive material itself. Both electron (ETL) and hole (HTL) transport layers are indeed directly involved in the efficiency and stability of the devices, due to the very specific properties required for these interfaces. Focusing on the HTL interface, a large number of materials has been used in organic solar cells, such as 2D materials, conductive polymers or transition metal oxides. In this review, we present the evolution and recent advances in HTL materials that have been employed in manufacturing organic solar cells, by describing their properties and deposition processes, and also relating their use with the fullerene or the new non-fullerene acceptors in the active layer.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"31 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v32i4.1549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Thanks to huge research efforts, organic solar cells have become serious candidates in the field of renewable energy sources, with reported power conversion efficiencies above 19% and operating lifetime surpassing decades. In the thin film stack composing the organic solar cell, the transport layers at interfaces play a key role, as important as the photoactive material itself. Both electron (ETL) and hole (HTL) transport layers are indeed directly involved in the efficiency and stability of the devices, due to the very specific properties required for these interfaces. Focusing on the HTL interface, a large number of materials has been used in organic solar cells, such as 2D materials, conductive polymers or transition metal oxides. In this review, we present the evolution and recent advances in HTL materials that have been employed in manufacturing organic solar cells, by describing their properties and deposition processes, and also relating their use with the fullerene or the new non-fullerene acceptors in the active layer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机太阳能电池中的空穴传输层研究进展
由于大量的研究工作,有机太阳能电池已成为可再生能源领域的重要候选者,据报道,其功率转换效率超过19%,使用寿命超过数十年。在组成有机太阳能电池的薄膜堆中,界面上的传输层与光活性材料本身一样重要,起着关键作用。电子(ETL)和空穴(HTL)传输层确实直接关系到器件的效率和稳定性,因为这些接口需要非常特殊的属性。以html界面为重点,大量材料被用于有机太阳能电池,如二维材料、导电聚合物或过渡金属氧化物。在这篇综述中,我们介绍了HTL材料在有机太阳能电池制造中的发展和最新进展,描述了HTL材料的性质和沉积工艺,并将其与富勒烯或新的非富勒烯受体在活性层中的应用联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of metals, materials and minerals
Journal of metals, materials and minerals MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
11.10%
发文量
0
期刊介绍: Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.
期刊最新文献
Photocatalytic degradation of ciprofloxacin drug utilizing novel PVDF/polyaniline/ lanthanum strontium manganate@Ag composites Dispersion mechanism of nanoparticles and its role on mechanical, thermal and electrical properties of epoxy nanocomposites - A Review Sustainable innovation in ballistic vest design: Exploration of polyurethane-coated hemp fabrics and reinforced sandwich epoxy composites against 9 mm and .40 S&W bullets Electrical and water resistance properties of conductive paste based on gold/silver composites Review of materials, functional components, fabrication technologies and assembling characteristics for polymer electrolyte membrane fuel cells (PEMFCs) – An update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1