{"title":"Study on Micro Electrochemical Machining at Micro to Meso-scale","authors":"Wansheng Zhao, Xiaohai Li, Zhenlong Wang","doi":"10.1109/NEMS.2006.334733","DOIUrl":null,"url":null,"abstract":"Electrochemical machining (ECM) is an anodic dissolution process of metal as anode ion by ion, and micro-ECM is a promising micro machining method at micro to mesoscale. Thus, a micro-ECM setup was developed to fabricate micro parts and explore the feasibility of micro-ECM at micro to mesoscale, including the design of high-frequency micro-energy pulse power supply. By using the detection unit of machining state and optical encoder, a closed loop control system for micro-ECM was developed. Under low concentration of passivating electrolyte, low machining voltage and high-frequency short-pulse current, the machining gap can be reduced to about 10 mum. A deep micro-hole about 100 mum in diameter was drilled by edge-cut electrode on stainless steel with 750 mum thickness. The process of NC micro-EC milling is proposed, and microstructures with high-aspect ratio on stainless steel were fabricated by micro-EC milling, such as profiled micro-hole, micro spiral beam and micro array square columns","PeriodicalId":6362,"journal":{"name":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"42 1","pages":"325-329"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2006.334733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Electrochemical machining (ECM) is an anodic dissolution process of metal as anode ion by ion, and micro-ECM is a promising micro machining method at micro to mesoscale. Thus, a micro-ECM setup was developed to fabricate micro parts and explore the feasibility of micro-ECM at micro to mesoscale, including the design of high-frequency micro-energy pulse power supply. By using the detection unit of machining state and optical encoder, a closed loop control system for micro-ECM was developed. Under low concentration of passivating electrolyte, low machining voltage and high-frequency short-pulse current, the machining gap can be reduced to about 10 mum. A deep micro-hole about 100 mum in diameter was drilled by edge-cut electrode on stainless steel with 750 mum thickness. The process of NC micro-EC milling is proposed, and microstructures with high-aspect ratio on stainless steel were fabricated by micro-EC milling, such as profiled micro-hole, micro spiral beam and micro array square columns