{"title":"Vertebrectomy Model for the Mechanical Assessment of Fusionless Scoliosis Growth Rods","authors":"J. Shorez","doi":"10.1520/JAI103493","DOIUrl":null,"url":null,"abstract":"Fusionless scoliosis growth rod systems pose many challenges to benchtop biomechanical testing. This study was conducted in order to develop a vertebrectomy model capable of evaluating shear/corrective reduction forces, anterior/posterior load sharing, and long term fatigue properties of these systems. Portions of ASTM F1717 and ISO 12189 were used to develop a custom dynamic construct. Results from the corrective/shear reduction force test demonstrate an expected reduced shear/corrective force at the completion of fatigue testing. Additionally, a bimodal force–displacement curve was demonstrated during confined static compression testing, indicating an anterior/posterior load sharing function of the system. Fatigue testing of the dynamic construct demonstrated the potential to develop a fatigue curve and endurance limit of a growth rod system. Moreover, fatigue testing replicated common in vivo failures. The complexities of scoliosis treatment make the definition of a standardized construct difficult. However, application of the current model can serve as a tool to understand the basic mechanical interactions in these complex systems.","PeriodicalId":15057,"journal":{"name":"Journal of Astm International","volume":"102 1","pages":"103493"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astm International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/JAI103493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fusionless scoliosis growth rod systems pose many challenges to benchtop biomechanical testing. This study was conducted in order to develop a vertebrectomy model capable of evaluating shear/corrective reduction forces, anterior/posterior load sharing, and long term fatigue properties of these systems. Portions of ASTM F1717 and ISO 12189 were used to develop a custom dynamic construct. Results from the corrective/shear reduction force test demonstrate an expected reduced shear/corrective force at the completion of fatigue testing. Additionally, a bimodal force–displacement curve was demonstrated during confined static compression testing, indicating an anterior/posterior load sharing function of the system. Fatigue testing of the dynamic construct demonstrated the potential to develop a fatigue curve and endurance limit of a growth rod system. Moreover, fatigue testing replicated common in vivo failures. The complexities of scoliosis treatment make the definition of a standardized construct difficult. However, application of the current model can serve as a tool to understand the basic mechanical interactions in these complex systems.