FC-TrackNet: Fast Convergence Net for 6D Pose Tracking in Synthetic Domains

Di Jia, Qianqian Wang, Jun Cao, Peng Cai, Zhiyang Jin
{"title":"FC-TrackNet: Fast Convergence Net for 6D Pose Tracking in Synthetic Domains","authors":"Di Jia, Qianqian Wang, Jun Cao, Peng Cai, Zhiyang Jin","doi":"10.1609/aaai.v37i13.27077","DOIUrl":null,"url":null,"abstract":"In this work, we propose a fast convergence track net, or FC-TrackNet, based on a synthetic data-driven approach to maintaining long-term 6D pose tracking. Comparison experiments are performed on two different datasets, The results demonstrate that our approach can achieve a consistent tracking frequency of 90.9 Hz as well as higher accuracy than the state-of-the art approaches.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"32 1","pages":"16455-16457"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i13.27077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose a fast convergence track net, or FC-TrackNet, based on a synthetic data-driven approach to maintaining long-term 6D pose tracking. Comparison experiments are performed on two different datasets, The results demonstrate that our approach can achieve a consistent tracking frequency of 90.9 Hz as well as higher accuracy than the state-of-the art approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FC-TrackNet:用于合成域6D姿态跟踪的快速收敛网络
在这项工作中,我们提出了一种基于综合数据驱动方法的快速收敛跟踪网络,或FC-TrackNet,以维持长期的6D姿态跟踪。在两个不同的数据集上进行了对比实验,结果表明,我们的方法可以实现90.9 Hz的一致跟踪频率,并且比目前的方法具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Open-Set Heterogeneous Domain Adaptation: Theoretical Analysis and Algorithm. Step-Calibrated Diffusion for Biomedical Optical Image Restoration. Tackling Intertwined Data and Device Heterogeneities in Federated Learning with Unlimited Staleness. A Deployed Online Reinforcement Learning Algorithm In An Oral Health Clinical Trial. Learning Physics Informed Neural ODEs with Partial Measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1