Development of a new blocking model for membrane fouling based on a composite media model

IF 4.9 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Letters Pub Date : 2022-05-01 DOI:10.1016/j.memlet.2022.100018
Andrew L. Zydney
{"title":"Development of a new blocking model for membrane fouling based on a composite media model","authors":"Andrew L. Zydney","doi":"10.1016/j.memlet.2022.100018","DOIUrl":null,"url":null,"abstract":"<div><p>The pore constriction (or standard blocking) model is widely used to describe the filtration behavior for a wide range of suspensions/solutions even though the underlying assumption of a uniform reduction in the radius of non-interconnected cylindrical pores is unlikely to be valid in almost any system. This short communication presents an alternative blocking model based on a description of the effective permeability of a fouled membrane accounting for the flow around and under the deposited foulant through the interconnected pore structure of the membrane. The resulting filtration equation gives linear fouling relationships that are very similar to those for the classical pore constriction model, including the slope on a derivative plot, providing a possible justification for the successful use of the pore constriction formalism in describing the flux decline behavior in many membrane systems. In addition, this new blocking model is readily extended to the case where the deposited foulant is permeable to flow. This new composite media blocking model not only provides useful expressions for the rate of flux decline during constant pressure filtration, it also provides insights into the underlying physical mechanisms controlling fouling in membrane systems.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"2 1","pages":"Article 100018"},"PeriodicalIF":4.9000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277242122200006X/pdfft?md5=188498cf425e22cb1a32cb11b7bedc18&pid=1-s2.0-S277242122200006X-main.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277242122200006X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 7

Abstract

The pore constriction (or standard blocking) model is widely used to describe the filtration behavior for a wide range of suspensions/solutions even though the underlying assumption of a uniform reduction in the radius of non-interconnected cylindrical pores is unlikely to be valid in almost any system. This short communication presents an alternative blocking model based on a description of the effective permeability of a fouled membrane accounting for the flow around and under the deposited foulant through the interconnected pore structure of the membrane. The resulting filtration equation gives linear fouling relationships that are very similar to those for the classical pore constriction model, including the slope on a derivative plot, providing a possible justification for the successful use of the pore constriction formalism in describing the flux decline behavior in many membrane systems. In addition, this new blocking model is readily extended to the case where the deposited foulant is permeable to flow. This new composite media blocking model not only provides useful expressions for the rate of flux decline during constant pressure filtration, it also provides insights into the underlying physical mechanisms controlling fouling in membrane systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于复合介质模型的膜污染阻塞模型的建立
孔隙收缩(或标准阻塞)模型被广泛用于描述各种悬浮液/溶液的过滤行为,尽管基本假设非互连圆柱形孔隙半径均匀减小在几乎任何系统中都不太可能有效。这一简短的交流提出了一种替代的阻塞模型,该模型基于对污染膜的有效渗透率的描述,考虑了通过膜的互联孔结构沉积的污染物周围和下面的流动。所得的过滤方程给出了与经典孔隙收缩模型非常相似的线性污染关系,包括导数图上的斜率,为成功使用孔隙收缩形式描述许多膜系统的通量下降行为提供了可能的理由。此外,这种新的堵塞模型很容易推广到沉积的污秽物可渗透流动的情况。这种新的复合介质堵塞模型不仅提供了恒压过滤过程中通量下降速率的有用表达式,而且还提供了对控制膜系统污染的潜在物理机制的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
期刊最新文献
Membrane gas separations and energy efficiency: Exploring the selective membrane-piston concept Reliable methods to determine experimental energy barriers for transport in salt-rejecting membranes Low-temperature rapid fabrication of crosslinked poly(quaterphenyl piperidine) membrane for anion exchange membrane water electrolyzers Engineering bio-inert and thermostable poly(vinylidene difluoride) membranes by grafting thermal-tolerant copolymers via ring-opening reaction Automated membrane characterization: In-situ monitoring of the permeate and retentate solutions using a 3D printed permeate probe device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1