Experimental Investigation of Cutting Parameters Effects on the Surface Roughness and Tools Wear during the Drilling of Fiber Reinforced Composite Materials

I. Ullah, M. Wasif, M. Tufail, M. A. Khan, S. A. Iqbal
{"title":"Experimental Investigation of Cutting Parameters Effects on the Surface Roughness and Tools Wear during the Drilling of Fiber Reinforced Composite Materials","authors":"I. Ullah, M. Wasif, M. Tufail, M. A. Khan, S. A. Iqbal","doi":"10.22581/muet1982.1903.15","DOIUrl":null,"url":null,"abstract":"Optimization of the drilling parameters of the composite material is the key objective of this research, enhancing the surface roughness and minimizing the tool wear. In contrary to the other research, optimizing the machining parameters for a specific composite material for the mass productions, machining parameters are optimized for GFRP (Glass Fiber Reinforced Polymer), CFRP (Carbon Fiber Reinforced Polymer) and KFRP (Kevlar Fiber Reinforced Polymer) for the job shop production. In this research, the machining parameters are optimized for the enhanced surface roughness and minimum tool wear by varying the three types of composite material and three levels of the cutting speed. Nine experiments were performed, which were repeated twice in random manner to eliminate the biasness of the results. In these experiments, PVD (Physical Vapor Deposition) coated carbide inserts are used with the same geometry. Seventeen holes were machined in a single experiment, which surface roughness is measured by cutting the composite plate from middle of the hole and using the Countermatic surface roughness meter at different locations. Average surface roughness is determining for each set of varying parameters and plotted to observe the set of parameters for the minimum surface roughness. It has been observed that the minimum surface roughness are observed at; 1500 rpm in GFRP, 2000 rpm in CFRP and at 2500 rpm in KFRP. Finally, the wear patterns are also observed on the drill inserts using SEM (Scanning Electron Microscope) and it has been found that no prominent wear has been observed in the drill inserts, whereas, prominent depletion of coating are found at the higher cutting speed.","PeriodicalId":17719,"journal":{"name":"July 2019","volume":"224 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"July 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22581/muet1982.1903.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Optimization of the drilling parameters of the composite material is the key objective of this research, enhancing the surface roughness and minimizing the tool wear. In contrary to the other research, optimizing the machining parameters for a specific composite material for the mass productions, machining parameters are optimized for GFRP (Glass Fiber Reinforced Polymer), CFRP (Carbon Fiber Reinforced Polymer) and KFRP (Kevlar Fiber Reinforced Polymer) for the job shop production. In this research, the machining parameters are optimized for the enhanced surface roughness and minimum tool wear by varying the three types of composite material and three levels of the cutting speed. Nine experiments were performed, which were repeated twice in random manner to eliminate the biasness of the results. In these experiments, PVD (Physical Vapor Deposition) coated carbide inserts are used with the same geometry. Seventeen holes were machined in a single experiment, which surface roughness is measured by cutting the composite plate from middle of the hole and using the Countermatic surface roughness meter at different locations. Average surface roughness is determining for each set of varying parameters and plotted to observe the set of parameters for the minimum surface roughness. It has been observed that the minimum surface roughness are observed at; 1500 rpm in GFRP, 2000 rpm in CFRP and at 2500 rpm in KFRP. Finally, the wear patterns are also observed on the drill inserts using SEM (Scanning Electron Microscope) and it has been found that no prominent wear has been observed in the drill inserts, whereas, prominent depletion of coating are found at the higher cutting speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纤维增强复合材料钻孔过程中切削参数对表面粗糙度和刀具磨损影响的实验研究
优化复合材料的钻削参数,提高表面粗糙度,减少刀具磨损是本研究的关键目标。与其他研究相反,优化特定复合材料的加工参数用于批量生产,优化加工参数用于车间生产的GFRP(玻璃纤维增强聚合物),CFRP(碳纤维增强聚合物)和KFRP(凯夫拉纤维增强聚合物)。在本研究中,通过改变三种复合材料类型和三种切削速度水平,优化加工参数以提高表面粗糙度和减小刀具磨损。共进行了9个实验,随机重复2次,以消除结果的偏倚。在这些实验中,使用具有相同几何形状的PVD(物理气相沉积)涂层硬质合金刀片。单次加工17个孔,通过从孔的中间切割复合板材,在不同位置使用Countermatic表面粗糙度仪测量表面粗糙度。对每组变化参数确定平均表面粗糙度,并绘制以观察最小表面粗糙度的参数集。观察到,最小表面粗糙度在;GFRP为1500转,CFRP为2000转,KFRP为2500转。最后,利用扫描电镜(SEM)观察了钻头的磨损模式,发现钻头没有明显的磨损,而在较高的切削速度下,发现了明显的涂层损耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Treatment for Multiple Sclerosis: Kidney-Du-Brain Axis (KIDUBA) Acupuncture Protocol Citrus-based hydrocolloids: A water retention aid and rheology modifier for paper coatings Measurement of the dynamics of fluid sorption for tissue papers Enhancement of processability, surface, and mechanical properties of paper based on rice straw pulp using biopolymers for packaging applications Kraft pulp bleaching with a P-stage catalyzed by both bicarbonate and TAED
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1