Optimal Expected-Shortfall Portfolio Selection with Copula-Induced Dependence

I. Gijbels, K. Herrmann
{"title":"Optimal Expected-Shortfall Portfolio Selection with Copula-Induced Dependence","authors":"I. Gijbels, K. Herrmann","doi":"10.1080/1350486X.2018.1492347","DOIUrl":null,"url":null,"abstract":"ABSTRACT We provide a computational framework for the selection of weights that minimize the expected shortfall of the aggregated risk . Contrary to classic and recent results, we neither restrict the marginal distributions nor the dependence structure of to any specific type. While the margins can be set to any absolutely continuous random variable with finite expectation, the dependence structure can be modelled by any absolutely continuous copula function. A real-world application to portfolio selection illustrates the usability of the new framework.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2018.1492347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

ABSTRACT We provide a computational framework for the selection of weights that minimize the expected shortfall of the aggregated risk . Contrary to classic and recent results, we neither restrict the marginal distributions nor the dependence structure of to any specific type. While the margins can be set to any absolutely continuous random variable with finite expectation, the dependence structure can be modelled by any absolutely continuous copula function. A real-world application to portfolio selection illustrates the usability of the new framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有copula诱导依赖的最优预期亏损投资组合选择
摘要:我们提供了一个计算框架来选择权重,使总风险的预期不足最小化。与经典和最近的结果相反,我们既没有限制边际分布,也没有限制的依赖结构为任何特定类型。边界可以设置为任意具有有限期望的绝对连续随机变量,而相关性结构可以用任意绝对连续的联结函数来建模。一个用于投资组合选择的实际应用程序说明了新框架的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
期刊最新文献
Price Impact Without Averaging On the Skew and Curvature of the Implied and Local Volatilities Arbitrage-Free Neural-SDE Market Models Policy Gradient Learning Methods for Stochastic Control with Exit Time and Applications to Share Repurchase Pricing Multi-Period Mean Expected-Shortfall Strategies: ‘Cut Your Losses and Ride Your Gains’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1