Sketch Me That Shoe

Qian Yu, Feng Liu, Yi-Zhe Song, T. Xiang, Timothy M. Hospedales, Chen Change Loy
{"title":"Sketch Me That Shoe","authors":"Qian Yu, Feng Liu, Yi-Zhe Song, T. Xiang, Timothy M. Hospedales, Chen Change Loy","doi":"10.1109/CVPR.2016.93","DOIUrl":null,"url":null,"abstract":"We investigate the problem of fine-grained sketch-based image retrieval (SBIR), where free-hand human sketches are used as queries to perform instance-level retrieval of images. This is an extremely challenging task because (i) visual comparisons not only need to be fine-grained but also executed cross-domain, (ii) free-hand (finger) sketches are highly abstract, making fine-grained matching harder, and most importantly (iii) annotated cross-domain sketch-photo datasets required for training are scarce, challenging many state-of-the-art machine learning techniques. In this paper, for the first time, we address all these challenges, providing a step towards the capabilities that would underpin a commercial sketch-based image retrieval application. We introduce a new database of 1,432 sketchphoto pairs from two categories with 32,000 fine-grained triplet ranking annotations. We then develop a deep tripletranking model for instance-level SBIR with a novel data augmentation and staged pre-training strategy to alleviate the issue of insufficient fine-grained training data. Extensive experiments are carried out to contribute a variety of insights into the challenges of data sufficiency and over-fitting avoidance when training deep networks for finegrained cross-domain ranking tasks.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"15 1","pages":"799-807"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"379","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 379

Abstract

We investigate the problem of fine-grained sketch-based image retrieval (SBIR), where free-hand human sketches are used as queries to perform instance-level retrieval of images. This is an extremely challenging task because (i) visual comparisons not only need to be fine-grained but also executed cross-domain, (ii) free-hand (finger) sketches are highly abstract, making fine-grained matching harder, and most importantly (iii) annotated cross-domain sketch-photo datasets required for training are scarce, challenging many state-of-the-art machine learning techniques. In this paper, for the first time, we address all these challenges, providing a step towards the capabilities that would underpin a commercial sketch-based image retrieval application. We introduce a new database of 1,432 sketchphoto pairs from two categories with 32,000 fine-grained triplet ranking annotations. We then develop a deep tripletranking model for instance-level SBIR with a novel data augmentation and staged pre-training strategy to alleviate the issue of insufficient fine-grained training data. Extensive experiments are carried out to contribute a variety of insights into the challenges of data sufficiency and over-fitting avoidance when training deep networks for finegrained cross-domain ranking tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
给我画那只鞋
我们研究了基于细粒度草图的图像检索(SBIR)问题,其中使用手绘草图作为查询来执行图像的实例级检索。这是一项极具挑战性的任务,因为(i)视觉比较不仅需要细粒度,而且还需要跨域执行,(ii)徒手(手指)草图高度抽象,使得细粒度匹配更加困难,最重要的是(iii)训练所需的带注释的跨域草图照片数据集稀缺,挑战了许多最先进的机器学习技术。在本文中,我们第一次解决了所有这些挑战,提供了一个支持商业基于草图的图像检索应用程序的步骤。我们引入了一个新的数据库,包含来自两个类别的1,432对素描照片,以及32,000个细粒度的三组排序注释。然后,我们开发了一个实例级SBIR的深度三重排序模型,该模型具有新颖的数据增强和分阶段预训练策略,以缓解细粒度训练数据不足的问题。在为细粒度跨域排序任务训练深度网络时,进行了广泛的实验,以对数据充分性和过度拟合避免的挑战提供各种见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Me That Shoe Multivariate Regression on the Grassmannian for Predicting Novel Domains How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image Discovering the Physical Parts of an Articulated Object Class from Multiple Videos Simultaneous Optical Flow and Intensity Estimation from an Event Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1