Iterative poisson-Gaussian noise parametric estimation for blind image denoising

A. Jezierska, J. Pesquet, Hugues Talbot, C. Chaux
{"title":"Iterative poisson-Gaussian noise parametric estimation for blind image denoising","authors":"A. Jezierska, J. Pesquet, Hugues Talbot, C. Chaux","doi":"10.1109/ICIP.2014.7025570","DOIUrl":null,"url":null,"abstract":"This paper deals with noise parameter estimation from a single image under Poisson-Gaussian noise statistics. The problem is formulated within a mixed discrete-continuous optimization framework. The proposed approach jointly estimates the signal of interest and the noise parameters. This is achieved by introducing an adjustable regularization term inside an optimized criterion, together with a data fidelity error measure. The optimal solution is sought iteratively by alternating the minimization of a label field and of a noise parameter vector. Noise parameters are updated at each iteration using an Expectation-Maximization approach. The proposed algorithm is inspired from a spatial regularization approach for vector quantization. We illustrate the usefulness of our approach on macroconfocal images. The identified noise parameters are applied to a denoising algorithm, so yielding a complete denoising scheme.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"259 1","pages":"2819-2823"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper deals with noise parameter estimation from a single image under Poisson-Gaussian noise statistics. The problem is formulated within a mixed discrete-continuous optimization framework. The proposed approach jointly estimates the signal of interest and the noise parameters. This is achieved by introducing an adjustable regularization term inside an optimized criterion, together with a data fidelity error measure. The optimal solution is sought iteratively by alternating the minimization of a label field and of a noise parameter vector. Noise parameters are updated at each iteration using an Expectation-Maximization approach. The proposed algorithm is inspired from a spatial regularization approach for vector quantization. We illustrate the usefulness of our approach on macroconfocal images. The identified noise parameters are applied to a denoising algorithm, so yielding a complete denoising scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
盲图像去噪的迭代泊松高斯噪声参数估计
本文研究了泊松-高斯噪声统计下单幅图像的噪声参数估计问题。该问题是在一个混合离散-连续优化框架内表述的。该方法对感兴趣的信号和噪声参数进行联合估计。这是通过在优化的准则中引入可调节的正则化项以及数据保真度误差测量来实现的。通过交替求标签域和噪声参数向量的最小值来迭代求最优解。在每次迭代中使用期望最大化方法更新噪声参数。该算法的灵感来自矢量量化的空间正则化方法。我们说明了我们的方法对宏观共聚焦图像的有用性。将识别出的噪声参数应用到去噪算法中,从而得到一个完整的去噪方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint source and channel coding of view and rate scalable multi-view video Inter-view consistent hole filling in view extrapolation for multi-view image generation Cost-aware depth map estimation for Lytro camera SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer Model based clustering for 3D directional features: Application to depth image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1