{"title":"TraCount: a deep convolutional neural network for highly overlapping vehicle counting","authors":"Shiv Surya, R. Venkatesh Babu","doi":"10.1145/3009977.3010060","DOIUrl":null,"url":null,"abstract":"We propose a novel deep framework, TraCount, for highly overlapping vehicle counting in congested traffic scenes. TraCount uses multiple fully convolutional(FC) sub-networks to predict the density map for a given static image of a traffic scene. The different FC sub-networks provide a range in size of receptive fields that enable us to count vehicles whose perspective effect varies significantly in a scene due to the large visual field of surveillance cameras. The predictions of different FC sub-networks are fused by weighted averaging to obtain a final density map.\n We show that TraCount outperforms the state of the art methods on the challenging TRANCOS dataset that has a total of 46796 vehicles annotated across 1244 images.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"38 1","pages":"46:1-46:6"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3010060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
We propose a novel deep framework, TraCount, for highly overlapping vehicle counting in congested traffic scenes. TraCount uses multiple fully convolutional(FC) sub-networks to predict the density map for a given static image of a traffic scene. The different FC sub-networks provide a range in size of receptive fields that enable us to count vehicles whose perspective effect varies significantly in a scene due to the large visual field of surveillance cameras. The predictions of different FC sub-networks are fused by weighted averaging to obtain a final density map.
We show that TraCount outperforms the state of the art methods on the challenging TRANCOS dataset that has a total of 46796 vehicles annotated across 1244 images.