Multi-fault diagnosis of gear based on sequential fuzzy inference

Z. Luo, Qiangqiang Chen, Peng Chen, Xiong Zhou
{"title":"Multi-fault diagnosis of gear based on sequential fuzzy inference","authors":"Z. Luo, Qiangqiang Chen, Peng Chen, Xiong Zhou","doi":"10.1109/MACE.2010.5535545","DOIUrl":null,"url":null,"abstract":"The article briefly analyzes the vibration mechanism of the gear fault and kinds of typical signal characteristics of the gears, and introduces successive fuzzy reasoning into the fault diagnosis of the gears. For the selection of characteristic parameters, we used the discrimination index DI to evaluate the identification ability of the characteristic parameters, and select the characteristic parameters of the largest value of DI. According to possibility theory and statistics and probability theory, we replace the original feature parameters into feature parameters of known distributional, and then equate the membership function used in fuzzy reasoning. Finally, the given diagnosis instance indicates that it is effective and feasible to use the method of successive fuzzy reasoning in the fault diagnosis of gears.","PeriodicalId":6349,"journal":{"name":"2010 International Conference on Mechanic Automation and Control Engineering","volume":"124 1","pages":"2492-2496"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Mechanic Automation and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MACE.2010.5535545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The article briefly analyzes the vibration mechanism of the gear fault and kinds of typical signal characteristics of the gears, and introduces successive fuzzy reasoning into the fault diagnosis of the gears. For the selection of characteristic parameters, we used the discrimination index DI to evaluate the identification ability of the characteristic parameters, and select the characteristic parameters of the largest value of DI. According to possibility theory and statistics and probability theory, we replace the original feature parameters into feature parameters of known distributional, and then equate the membership function used in fuzzy reasoning. Finally, the given diagnosis instance indicates that it is effective and feasible to use the method of successive fuzzy reasoning in the fault diagnosis of gears.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于序列模糊推理的齿轮多故障诊断
简要分析了齿轮故障的振动机理和齿轮的各种典型信号特征,并将逐次模糊推理引入到齿轮故障诊断中。对于特征参数的选择,我们使用识别指数DI来评价特征参数的识别能力,并选择DI值最大的特征参数。根据可能性理论和统计概率论,将原始特征参数替换为已知分布的特征参数,然后将隶属度函数等价于模糊推理。最后,给出的诊断实例表明,将逐次模糊推理方法应用于齿轮故障诊断是有效可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the framework of eco-city planning and development standard in Wuhan Effect of Y on microstructure of laser clad coatings reinforced by in situ synthesized TiB and TiC Preparation of Pd-B/TiO2 amorphous alloy and its catalytic performance on the thermal decomposition of ammonium perchlorate The new shape forming technology of composite concrete machine tool beds Matching unorganized data sets using multi-scale feature points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1