{"title":"Energy modelling and rating - (a personal overview)","authors":"S. Ransome","doi":"10.1109/PVSC.2014.6925329","DOIUrl":null,"url":null,"abstract":"There are two main requirements for PV model accuracy - 1) Power Modelling : “Measured vs. predicted PMAX W” at each measurement (under variable weather conditions). 2) Energy Rating : “Measured vs. predicted energy yield (kWh/kWp)” summed over a time period such as 1 year. The relative spread in measured energy yield (kWh/kWp) from systems of different technologies has been reducing over the years to less than f a few % as power tolerances have decreased (from more accurate measurements by the manufacturers) and lower marketing tolerances including allowances for degradation [1][2]. PV technologies are also now optimised with better low light performance [3]. Predicted energy yields from PV simulation programs have been found to be very dependent on the default loss assumptions and user estimates for module mismatch, soiling, measured/nominal Pmax etc. [4]","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"48 1","pages":"2047-2052"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6925329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
There are two main requirements for PV model accuracy - 1) Power Modelling : “Measured vs. predicted PMAX W” at each measurement (under variable weather conditions). 2) Energy Rating : “Measured vs. predicted energy yield (kWh/kWp)” summed over a time period such as 1 year. The relative spread in measured energy yield (kWh/kWp) from systems of different technologies has been reducing over the years to less than f a few % as power tolerances have decreased (from more accurate measurements by the manufacturers) and lower marketing tolerances including allowances for degradation [1][2]. PV technologies are also now optimised with better low light performance [3]. Predicted energy yields from PV simulation programs have been found to be very dependent on the default loss assumptions and user estimates for module mismatch, soiling, measured/nominal Pmax etc. [4]