{"title":"A review on the manufacturing techniques of porous hydrophobic ceramic membranes applied to direct contact membrane distillation","authors":"R. Ferreira, H. Ramlow, C. Marangoni, R. Machado","doi":"10.1080/17436753.2021.1981749","DOIUrl":null,"url":null,"abstract":"ABSTRACT Porous hydrophobic ceramic membranes have been increasingly applied in advanced membrane-based separation processes such as Direct Contact Membrane Distillation (DCMD) due to their higher chemical and mechanical resistances. The development of novel ceramic membranes enhanced with porosity is based on conventional techniques such as extrusion and tape casting, and unique processing such as dry–wet spinning and vacuum filtration. The relationships between shaping and surface hydrophobization related to the membrane structure, properties and performance of the ceramic membrane applied to DCMD are explained in this work. The manufacturing technique influences the membrane characteristics, and consequently the permeability in DCMD. Recent research is focused on manufacturing high porous hollow fibre ceramic membranes by dry–wet spinning. In contrast to the grafting of alkylsilanes, the chemical vapour deposition process has been applied as an effective surface modifying technique to enhance membrane hydrophobicity. Ceramic membranes are mostly applied to desalination in DCMD and have been little researched concerning the unique properties they can offer, such as superhydrophobicity and use in a harsh environment. In addition to the review of manufacturing techniques, polymer-derived ceramic (PDC) is proposed as a one-step ceramic membrane processing route for DCMD. Although only a handful of works addressed the use of PDC membranes applied to DCMD, the great potential of these materials is forecast.","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":"23 1","pages":"336 - 357"},"PeriodicalIF":1.3000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/17436753.2021.1981749","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 5
Abstract
ABSTRACT Porous hydrophobic ceramic membranes have been increasingly applied in advanced membrane-based separation processes such as Direct Contact Membrane Distillation (DCMD) due to their higher chemical and mechanical resistances. The development of novel ceramic membranes enhanced with porosity is based on conventional techniques such as extrusion and tape casting, and unique processing such as dry–wet spinning and vacuum filtration. The relationships between shaping and surface hydrophobization related to the membrane structure, properties and performance of the ceramic membrane applied to DCMD are explained in this work. The manufacturing technique influences the membrane characteristics, and consequently the permeability in DCMD. Recent research is focused on manufacturing high porous hollow fibre ceramic membranes by dry–wet spinning. In contrast to the grafting of alkylsilanes, the chemical vapour deposition process has been applied as an effective surface modifying technique to enhance membrane hydrophobicity. Ceramic membranes are mostly applied to desalination in DCMD and have been little researched concerning the unique properties they can offer, such as superhydrophobicity and use in a harsh environment. In addition to the review of manufacturing techniques, polymer-derived ceramic (PDC) is proposed as a one-step ceramic membrane processing route for DCMD. Although only a handful of works addressed the use of PDC membranes applied to DCMD, the great potential of these materials is forecast.
期刊介绍:
Advances in Applied Ceramics: Structural, Functional and Bioceramics provides international coverage of high-quality research on functional ceramics, engineering ceramics and bioceramics.