An efficient approach to device parameter extraction for statistical IC modeling

M. Qu, M. Styblinski
{"title":"An efficient approach to device parameter extraction for statistical IC modeling","authors":"M. Qu, M. Styblinski","doi":"10.1109/CICC.1996.511091","DOIUrl":null,"url":null,"abstract":"A technique called Recursive Inverse Approximation (RIA) has been developed for parameter extraction for statistical IC modeling. High accuracy and efficiency are achieved by the proposed methodology. RIA combines the global optimization, parameter prediction, parameter correction, and accuracy checking. RIA fundamentally solves the accuracy problem in statistical IC parameter extraction. The proposed method is much faster than the optimization-based method. The technique was implemented in SMIC - a program for statistical modeling of integrated circuits.","PeriodicalId":74515,"journal":{"name":"Proceedings of the ... Custom Integrated Circuits Conference. Custom Integrated Circuits Conference","volume":"87 1","pages":"329-332"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Custom Integrated Circuits Conference. Custom Integrated Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.1996.511091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A technique called Recursive Inverse Approximation (RIA) has been developed for parameter extraction for statistical IC modeling. High accuracy and efficiency are achieved by the proposed methodology. RIA combines the global optimization, parameter prediction, parameter correction, and accuracy checking. RIA fundamentally solves the accuracy problem in statistical IC parameter extraction. The proposed method is much faster than the optimization-based method. The technique was implemented in SMIC - a program for statistical modeling of integrated circuits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
统计IC建模中器件参数提取的一种有效方法
一种称为递归反逼近(RIA)的技术被开发用于统计集成电路建模的参数提取。该方法具有较高的精度和效率。RIA结合了全局优化、参数预测、参数校正和精度检查。RIA从根本上解决了统计IC参数提取的准确性问题。该方法比基于优化的方法要快得多。该技术在SMIC集成电路统计建模程序中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
期刊最新文献
A 13.1 mm 2 512 x 256 Multimodal CMOS Array for Spatiochemical Imaging of Bacterial Biofilms. A 6-Transistor Ultra-Low Power CMOS Voltage Reference with 0.02%/V Line Sensitivity. A 27-Mbps, 0.08-mm3 CMOS Transceiver with Simultaneous Near-field Power Transmission and Data Telemetry for Implantable Systems. A single chip HDD PRML channel A high yield 12-bit 250-MS/s CMOS D/A converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1